Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhucn Structured version   Visualization version   GIF version

Theorem qqhucn 29166
Description: The ℚHom homomorphism is uniformly continuous. (Contributed by Thierry Arnoux, 28-Jan-2018.)
Hypotheses
Ref Expression
qqhucn.b 𝐵 = (Base‘𝑅)
qqhucn.q 𝑄 = (ℂflds ℚ)
qqhucn.u 𝑈 = (UnifSt‘𝑄)
qqhucn.v 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
qqhucn.z 𝑍 = (ℤMod‘𝑅)
qqhucn.1 (𝜑𝑅 ∈ NrmRing)
qqhucn.2 (𝜑𝑅 ∈ DivRing)
qqhucn.3 (𝜑𝑍 ∈ NrmMod)
qqhucn.4 (𝜑 → (chr‘𝑅) = 0)
Assertion
Ref Expression
qqhucn (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))

Proof of Theorem qqhucn
Dummy variables 𝑒 𝑑 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qqhucn.2 . . . 4 (𝜑𝑅 ∈ DivRing)
2 qqhucn.4 . . . 4 (𝜑 → (chr‘𝑅) = 0)
3 qqhucn.b . . . . 5 𝐵 = (Base‘𝑅)
4 eqid 2605 . . . . 5 (/r𝑅) = (/r𝑅)
5 eqid 2605 . . . . 5 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
63, 4, 5qqhf 29160 . . . 4 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅):ℚ⟶𝐵)
71, 2, 6syl2anc 690 . . 3 (𝜑 → (ℚHom‘𝑅):ℚ⟶𝐵)
8 simpr 475 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → 𝑒 ∈ ℝ+)
9 qqhucn.1 . . . . . . . . . . . . . . 15 (𝜑𝑅 ∈ NrmRing)
10 nrgngp 22205 . . . . . . . . . . . . . . 15 (𝑅 ∈ NrmRing → 𝑅 ∈ NrmGrp)
119, 10syl 17 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ NrmGrp)
1211ad2antrr 757 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ NrmGrp)
137ffvelrnda 6248 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
1413adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵)
157adantr 479 . . . . . . . . . . . . . 14 ((𝜑𝑝 ∈ ℚ) → (ℚHom‘𝑅):ℚ⟶𝐵)
1615ffvelrnda 6248 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵)
17 eqid 2605 . . . . . . . . . . . . . 14 (norm‘𝑅) = (norm‘𝑅)
18 eqid 2605 . . . . . . . . . . . . . 14 (-g𝑅) = (-g𝑅)
19 eqid 2605 . . . . . . . . . . . . . 14 (dist‘𝑅) = (dist‘𝑅)
2017, 3, 18, 19ngpdsr 22155 . . . . . . . . . . . . 13 ((𝑅 ∈ NrmGrp ∧ ((ℚHom‘𝑅)‘𝑝) ∈ 𝐵 ∧ ((ℚHom‘𝑅)‘𝑞) ∈ 𝐵) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
2112, 14, 16, 20syl3anc 1317 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))))
22 simpr 475 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℚ)
23 simplr 787 . . . . . . . . . . . . . . . 16 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℚ)
24 qsubdrg 19559 . . . . . . . . . . . . . . . . . . 19 (ℚ ∈ (SubRing‘ℂfld) ∧ (ℂflds ℚ) ∈ DivRing)
2524simpli 472 . . . . . . . . . . . . . . . . . 18 ℚ ∈ (SubRing‘ℂfld)
26 subrgsubg 18551 . . . . . . . . . . . . . . . . . 18 (ℚ ∈ (SubRing‘ℂfld) → ℚ ∈ (SubGrp‘ℂfld))
2725, 26ax-mp 5 . . . . . . . . . . . . . . . . 17 ℚ ∈ (SubGrp‘ℂfld)
28 cnfldsub 19535 . . . . . . . . . . . . . . . . . 18 − = (-g‘ℂfld)
29 qqhucn.q . . . . . . . . . . . . . . . . . 18 𝑄 = (ℂflds ℚ)
30 eqid 2605 . . . . . . . . . . . . . . . . . 18 (-g𝑄) = (-g𝑄)
3128, 29, 30subgsub 17371 . . . . . . . . . . . . . . . . 17 ((ℚ ∈ (SubGrp‘ℂfld) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3227, 31mp3an1 1402 . . . . . . . . . . . . . . . 16 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3322, 23, 32syl2anc 690 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) = (𝑞(-g𝑄)𝑝))
3433fveq2d 6088 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞𝑝)) = ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)))
353, 4, 5, 29qqhghm 29162 . . . . . . . . . . . . . . . . 17 ((𝑅 ∈ DivRing ∧ (chr‘𝑅) = 0) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
361, 2, 35syl2anc 690 . . . . . . . . . . . . . . . 16 (𝜑 → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3736ad2antrr 757 . . . . . . . . . . . . . . 15 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅))
3829qrngbas 25021 . . . . . . . . . . . . . . . 16 ℚ = (Base‘𝑄)
3938, 30, 18ghmsub 17433 . . . . . . . . . . . . . . 15 (((ℚHom‘𝑅) ∈ (𝑄 GrpHom 𝑅) ∧ 𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4037, 22, 23, 39syl3anc 1317 . . . . . . . . . . . . . 14 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((ℚHom‘𝑅)‘(𝑞(-g𝑄)𝑝)) = (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)))
4134, 40eqtr2d 2640 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝)) = ((ℚHom‘𝑅)‘(𝑞𝑝)))
4241fveq2d 6088 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘(((ℚHom‘𝑅)‘𝑞)(-g𝑅)((ℚHom‘𝑅)‘𝑝))) = ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))))
439, 1elind 3755 . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ (NrmRing ∩ DivRing))
4443ad2antrr 757 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑅 ∈ (NrmRing ∩ DivRing))
45 qqhucn.3 . . . . . . . . . . . . . 14 (𝜑𝑍 ∈ NrmMod)
4645ad2antrr 757 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑍 ∈ NrmMod)
472ad2antrr 757 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (chr‘𝑅) = 0)
48 qsubcl 11635 . . . . . . . . . . . . . 14 ((𝑞 ∈ ℚ ∧ 𝑝 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
4922, 23, 48syl2anc 690 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑞𝑝) ∈ ℚ)
50 qqhucn.z . . . . . . . . . . . . . 14 𝑍 = (ℤMod‘𝑅)
5117, 50qqhnm 29164 . . . . . . . . . . . . 13 (((𝑅 ∈ (NrmRing ∩ DivRing) ∧ 𝑍 ∈ NrmMod ∧ (chr‘𝑅) = 0) ∧ (𝑞𝑝) ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5244, 46, 47, 49, 51syl31anc 1320 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((norm‘𝑅)‘((ℚHom‘𝑅)‘(𝑞𝑝))) = (abs‘(𝑞𝑝)))
5321, 42, 523eqtrd 2643 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)) = (abs‘(𝑞𝑝)))
5414, 16ovresd 6673 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) = (((ℚHom‘𝑅)‘𝑝)(dist‘𝑅)((ℚHom‘𝑅)‘𝑞)))
55 qsscn 11627 . . . . . . . . . . . . . 14 ℚ ⊆ ℂ
5655, 23sseldi 3561 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑝 ∈ ℂ)
5755, 22sseldi 3561 . . . . . . . . . . . . 13 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → 𝑞 ∈ ℂ)
58 eqid 2605 . . . . . . . . . . . . . 14 (abs ∘ − ) = (abs ∘ − )
5958cnmetdval 22312 . . . . . . . . . . . . 13 ((𝑝 ∈ ℂ ∧ 𝑞 ∈ ℂ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6056, 57, 59syl2anc 690 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝(abs ∘ − )𝑞) = (abs‘(𝑝𝑞)))
6123, 22ovresd 6673 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (𝑝(abs ∘ − )𝑞))
6257, 56abssubd 13982 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (abs‘(𝑞𝑝)) = (abs‘(𝑝𝑞)))
6360, 61, 623eqtr4d 2649 . . . . . . . . . . 11 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (abs‘(𝑞𝑝)))
6453, 54, 633eqtr4rd 2650 . . . . . . . . . 10 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) = (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)))
6564breq1d 4583 . . . . . . . . 9 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 ↔ (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6665biimpd 217 . . . . . . . 8 (((𝜑𝑝 ∈ ℚ) ∧ 𝑞 ∈ ℚ) → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6766ralrimiva 2944 . . . . . . 7 ((𝜑𝑝 ∈ ℚ) → ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6867ralrimiva 2944 . . . . . 6 (𝜑 → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
6968adantr 479 . . . . 5 ((𝜑𝑒 ∈ ℝ+) → ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
70 breq2 4577 . . . . . . . 8 (𝑑 = 𝑒 → ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 ↔ (𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒))
7170imbi1d 329 . . . . . . 7 (𝑑 = 𝑒 → (((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
72712ralbidv 2967 . . . . . 6 (𝑑 = 𝑒 → (∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒) ↔ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)))
7372rspcev 3277 . . . . 5 ((𝑒 ∈ ℝ+ ∧ ∀𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑒 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒)) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
748, 69, 73syl2anc 690 . . . 4 ((𝜑𝑒 ∈ ℝ+) → ∃𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
7574ralrimiva 2944 . . 3 (𝜑 → ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))
76 eqid 2605 . . . 4 (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
77 qqhucn.v . . . 4 𝑉 = (metUnif‘((dist‘𝑅) ↾ (𝐵 × 𝐵)))
78 0z 11217 . . . . . 6 0 ∈ ℤ
79 zq 11622 . . . . . 6 (0 ∈ ℤ → 0 ∈ ℚ)
80 ne0i 3875 . . . . . 6 (0 ∈ ℚ → ℚ ≠ ∅)
8178, 79, 80mp2b 10 . . . . 5 ℚ ≠ ∅
8281a1i 11 . . . 4 (𝜑 → ℚ ≠ ∅)
83 drngring 18519 . . . . 5 (𝑅 ∈ DivRing → 𝑅 ∈ Ring)
84 eqid 2605 . . . . . 6 (1r𝑅) = (1r𝑅)
853, 84ringidcl 18333 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐵)
86 ne0i 3875 . . . . 5 ((1r𝑅) ∈ 𝐵𝐵 ≠ ∅)
871, 83, 85, 864syl 19 . . . 4 (𝜑𝐵 ≠ ∅)
88 cnfldxms 22318 . . . . . . . 8 fld ∈ ∞MetSp
89 qex 11628 . . . . . . . 8 ℚ ∈ V
90 ressxms 22077 . . . . . . . 8 ((ℂfld ∈ ∞MetSp ∧ ℚ ∈ V) → (ℂflds ℚ) ∈ ∞MetSp)
9188, 89, 90mp2an 703 . . . . . . 7 (ℂflds ℚ) ∈ ∞MetSp
9229, 91eqeltri 2679 . . . . . 6 𝑄 ∈ ∞MetSp
93 cnfldds 19519 . . . . . . . . 9 (abs ∘ − ) = (dist‘ℂfld)
9429, 93ressds 15838 . . . . . . . 8 (ℚ ∈ V → (abs ∘ − ) = (dist‘𝑄))
9589, 94ax-mp 5 . . . . . . 7 (abs ∘ − ) = (dist‘𝑄)
9638, 95xmsxmet2 22011 . . . . . 6 (𝑄 ∈ ∞MetSp → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
9792, 96mp1i 13 . . . . 5 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ))
98 xmetpsmet 21900 . . . . 5 (((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (∞Met‘ℚ) → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
9997, 98syl 17 . . . 4 (𝜑 → ((abs ∘ − ) ↾ (ℚ × ℚ)) ∈ (PsMet‘ℚ))
100 ngpxms 22152 . . . . . 6 (𝑅 ∈ NrmGrp → 𝑅 ∈ ∞MetSp)
1013, 19xmsxmet2 22011 . . . . . 6 (𝑅 ∈ ∞MetSp → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
1029, 10, 100, 1014syl 19 . . . . 5 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵))
103 xmetpsmet 21900 . . . . 5 (((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (∞Met‘𝐵) → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
104102, 103syl 17 . . . 4 (𝜑 → ((dist‘𝑅) ↾ (𝐵 × 𝐵)) ∈ (PsMet‘𝐵))
10576, 77, 82, 87, 99, 104metucn 22123 . . 3 (𝜑 → ((ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉) ↔ ((ℚHom‘𝑅):ℚ⟶𝐵 ∧ ∀𝑒 ∈ ℝ+𝑑 ∈ ℝ+𝑝 ∈ ℚ ∀𝑞 ∈ ℚ ((𝑝((abs ∘ − ) ↾ (ℚ × ℚ))𝑞) < 𝑑 → (((ℚHom‘𝑅)‘𝑝)((dist‘𝑅) ↾ (𝐵 × 𝐵))((ℚHom‘𝑅)‘𝑞)) < 𝑒))))
1067, 75, 105mpbir2and 958 . 2 (𝜑 → (ℚHom‘𝑅) ∈ ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
107 qqhucn.u . . . . . 6 𝑈 = (UnifSt‘𝑄)
10829fveq2i 6087 . . . . . 6 (UnifSt‘𝑄) = (UnifSt‘(ℂflds ℚ))
109 ressuss 21815 . . . . . . 7 (ℚ ∈ V → (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)))
11089, 109ax-mp 5 . . . . . 6 (UnifSt‘(ℂflds ℚ)) = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
111107, 108, 1103eqtri 2631 . . . . 5 𝑈 = ((UnifSt‘ℂfld) ↾t (ℚ × ℚ))
112 eqid 2605 . . . . . . 7 (UnifSt‘ℂfld) = (UnifSt‘ℂfld)
113112cnflduss 22873 . . . . . 6 (UnifSt‘ℂfld) = (metUnif‘(abs ∘ − ))
114113oveq1i 6533 . . . . 5 ((UnifSt‘ℂfld) ↾t (ℚ × ℚ)) = ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ))
115 cnxmet 22314 . . . . . . 7 (abs ∘ − ) ∈ (∞Met‘ℂ)
116 xmetpsmet 21900 . . . . . . 7 ((abs ∘ − ) ∈ (∞Met‘ℂ) → (abs ∘ − ) ∈ (PsMet‘ℂ))
117115, 116ax-mp 5 . . . . . 6 (abs ∘ − ) ∈ (PsMet‘ℂ)
118 restmetu 22122 . . . . . 6 ((ℚ ≠ ∅ ∧ (abs ∘ − ) ∈ (PsMet‘ℂ) ∧ ℚ ⊆ ℂ) → ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
11981, 117, 55, 118mp3an 1415 . . . . 5 ((metUnif‘(abs ∘ − )) ↾t (ℚ × ℚ)) = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
120111, 114, 1193eqtri 2631 . . . 4 𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ)))
121120a1i 11 . . 3 (𝜑𝑈 = (metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))))
122121oveq1d 6538 . 2 (𝜑 → (𝑈 Cnu𝑉) = ((metUnif‘((abs ∘ − ) ↾ (ℚ × ℚ))) Cnu𝑉))
123106, 122eleqtrrd 2686 1 (𝜑 → (ℚHom‘𝑅) ∈ (𝑈 Cnu𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  wral 2891  wrex 2892  Vcvv 3168  cin 3534  wss 3535  c0 3869   class class class wbr 4573   × cxp 5022  cres 5026  ccom 5028  wf 5782  cfv 5786  (class class class)co 6523  cc 9786  0cc0 9788   < clt 9926  cmin 10113  cz 11206  cq 11616  +crp 11660  abscabs 13764  Basecbs 15637  s cress 15638  distcds 15719  t crest 15846  -gcsg 17189  SubGrpcsubg 17353   GrpHom cghm 17422  1rcur 18266  Ringcrg 18312  /rcdvr 18447  DivRingcdr 18512  SubRingcsubrg 18541  PsMetcpsmet 19493  ∞Metcxmt 19494  metUnifcmetu 19500  fldccnfld 19509  ℤRHomczrh 19608  ℤModczlm 19609  chrcchr 19610  UnifStcuss 21805   Cnucucn 21827  ∞MetSpcxme 21869  normcnm 22128  NrmGrpcngp 22129  NrmRingcnrg 22131  NrmModcnlm 22132  ℚHomcqqh 29146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866  ax-addf 9867  ax-mulf 9868
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-tpos 7212  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-inf 8205  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-4 10924  df-5 10925  df-6 10926  df-7 10927  df-8 10928  df-9 10929  df-n0 11136  df-z 11207  df-dec 11322  df-uz 11516  df-q 11617  df-rp 11661  df-xneg 11774  df-xadd 11775  df-xmul 11776  df-ico 12004  df-fz 12149  df-fzo 12286  df-fl 12406  df-mod 12482  df-seq 12615  df-exp 12674  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-dvds 14764  df-gcd 14997  df-numer 15223  df-denom 15224  df-gz 15414  df-struct 15639  df-ndx 15640  df-slot 15641  df-base 15642  df-sets 15643  df-ress 15644  df-plusg 15723  df-mulr 15724  df-starv 15725  df-sca 15726  df-vsca 15727  df-tset 15729  df-ple 15730  df-ds 15733  df-unif 15734  df-rest 15848  df-topn 15849  df-0g 15867  df-topgen 15869  df-mgm 17007  df-sgrp 17049  df-mnd 17060  df-mhm 17100  df-grp 17190  df-minusg 17191  df-sbg 17192  df-mulg 17306  df-subg 17356  df-ghm 17423  df-od 17713  df-cmn 17960  df-abl 17961  df-mgp 18255  df-ur 18267  df-ring 18314  df-cring 18315  df-oppr 18388  df-dvdsr 18406  df-unit 18407  df-invr 18437  df-dvr 18448  df-rnghom 18480  df-drng 18514  df-subrg 18543  df-abv 18582  df-lmod 18630  df-nzr 19021  df-psmet 19501  df-xmet 19502  df-met 19503  df-bl 19504  df-mopn 19505  df-fbas 19506  df-fg 19507  df-metu 19508  df-cnfld 19510  df-zring 19580  df-zrh 19612  df-zlm 19613  df-chr 19614  df-top 20459  df-bases 20460  df-topon 20461  df-topsp 20462  df-fil 21398  df-ust 21752  df-uss 21808  df-ucn 21828  df-xms 21872  df-ms 21873  df-nm 22134  df-ngp 22135  df-nrg 22137  df-nlm 22138  df-qqh 29147
This theorem is referenced by:  rrhcn  29171
  Copyright terms: Public domain W3C validator