MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeu Structured version   Visualization version   GIF version

Theorem qredeu 16001
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qredeu
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 12003 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2 gcddvds 15851 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ∧ (𝑧 gcd 𝑛) ∥ 𝑛))
32simpld 497 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑧)
41, 3sylan2 594 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑧)
5 gcdcl 15854 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∈ ℕ0)
61, 5sylan2 594 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ0)
76nn0zd 12084 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℤ)
8 simpl 485 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℤ)
91adantl 484 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
10 nnne0 11670 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
1110neneqd 3021 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
1211intnand 491 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
1312adantl 484 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
14 gcdn0cl 15850 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑛 = 0)) → (𝑧 gcd 𝑛) ∈ ℕ)
158, 9, 13, 14syl21anc 835 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ)
16 nnne0 11670 . . . . . . . . . . 11 ((𝑧 gcd 𝑛) ∈ ℕ → (𝑧 gcd 𝑛) ≠ 0)
1715, 16syl 17 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ≠ 0)
18 dvdsval2 15609 . . . . . . . . . 10 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
197, 17, 8, 18syl3anc 1367 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
204, 19mpbid 234 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
21203adant3 1128 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
222simprd 498 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑛)
231, 22sylan2 594 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑛)
24 dvdsval2 15609 . . . . . . . . . . . 12 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
257, 17, 9, 24syl3anc 1367 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
2623, 25mpbid 234 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ)
27 nnre 11644 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2827adantl 484 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
296nn0red 11955 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℝ)
30 nngt0 11667 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
3130adantl 484 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
32 nngt0 11667 . . . . . . . . . . . 12 ((𝑧 gcd 𝑛) ∈ ℕ → 0 < (𝑧 gcd 𝑛))
3315, 32syl 17 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑧 gcd 𝑛))
3428, 29, 31, 33divgt0d 11574 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑛 / (𝑧 gcd 𝑛)))
3526, 34jca 514 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
36353adant3 1128 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
37 elnnz 11990 . . . . . . . 8 ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ ↔ ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
3836, 37sylibr 236 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ)
3921, 38opelxpd 5592 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ))
4020, 26gcdcld 15856 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℕ0)
4140nn0cnd 11956 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℂ)
42 1cnd 10635 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
436nn0cnd 11956 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℂ)
4443mulid1d 10657 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · 1) = (𝑧 gcd 𝑛))
45 zcn 11985 . . . . . . . . . . . 12 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
4645adantr 483 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
4746, 43, 17divcan2d 11417 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) = 𝑧)
48 nncn 11645 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
4948adantl 484 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
5049, 43, 17divcan2d 11417 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛))) = 𝑛)
5147, 50oveq12d 7173 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = (𝑧 gcd 𝑛))
52 mulgcd 15895 . . . . . . . . . 10 (((𝑧 gcd 𝑛) ∈ ℕ0 ∧ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
536, 20, 26, 52syl3anc 1367 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
5444, 51, 533eqtr2rd 2863 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · 1))
5541, 42, 43, 17, 54mulcanad 11274 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
56553adant3 1128 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
5710adantl 484 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ≠ 0)
5846, 49, 43, 57, 17divcan7d 11443 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) = (𝑧 / 𝑛))
5958eqeq2d 2832 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) ↔ 𝐴 = (𝑧 / 𝑛)))
6059biimp3ar 1466 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
61 ovex 7188 . . . . . . . . . . 11 (𝑧 / (𝑧 gcd 𝑛)) ∈ V
62 ovex 7188 . . . . . . . . . . 11 (𝑛 / (𝑧 gcd 𝑛)) ∈ V
6361, 62op1std 7698 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (1st𝑥) = (𝑧 / (𝑧 gcd 𝑛)))
6461, 62op2ndd 7699 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (2nd𝑥) = (𝑛 / (𝑧 gcd 𝑛)))
6563, 64oveq12d 7173 . . . . . . . . 9 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → ((1st𝑥) gcd (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))))
6665eqeq1d 2823 . . . . . . . 8 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1))
6763, 64oveq12d 7173 . . . . . . . . 9 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → ((1st𝑥) / (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
6867eqeq2d 2832 . . . . . . . 8 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛)))))
6966, 68anbi12d 632 . . . . . . 7 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))))
7069rspcev 3622 . . . . . 6 ((⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ) ∧ (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))) → ∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
7139, 56, 60, 70syl12anc 834 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
72 elxp6 7722 . . . . . . 7 (𝑥 ∈ (ℤ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)))
73 elxp6 7722 . . . . . . 7 (𝑦 ∈ (ℤ × ℕ) ↔ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)))
74 simprl 769 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
7574ad2antrr 724 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑥) ∈ ℤ)
76 simprr 771 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
7776ad2antrr 724 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑥) ∈ ℕ)
78 simprll 777 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) gcd (2nd𝑥)) = 1)
79 simprl 769 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (1st𝑦) ∈ ℤ)
8079ad2antlr 725 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑦) ∈ ℤ)
81 simprr 771 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (2nd𝑦) ∈ ℕ)
8281ad2antlr 725 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑦) ∈ ℕ)
83 simprrl 779 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑦) gcd (2nd𝑦)) = 1)
84 simprlr 778 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑥) / (2nd𝑥)))
85 simprrr 780 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑦) / (2nd𝑦)))
8684, 85eqtr3d 2858 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
87 qredeq 16000 . . . . . . . . . . 11 ((((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ ∧ ((1st𝑥) gcd (2nd𝑥)) = 1) ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ ∧ ((1st𝑦) gcd (2nd𝑦)) = 1) ∧ ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
8875, 77, 78, 80, 82, 83, 86, 87syl331anc 1391 . . . . . . . . . 10 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
89 fvex 6682 . . . . . . . . . . 11 (1st𝑥) ∈ V
90 fvex 6682 . . . . . . . . . . 11 (2nd𝑥) ∈ V
9189, 90opth 5367 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
9288, 91sylibr 236 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
93 simplll 773 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
94 simplrl 775 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
9592, 93, 943eqtr4d 2866 . . . . . . . 8 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = 𝑦)
9695ex 415 . . . . . . 7 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
9772, 73, 96syl2anb 599 . . . . . 6 ((𝑥 ∈ (ℤ × ℕ) ∧ 𝑦 ∈ (ℤ × ℕ)) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
9897rgen2 3203 . . . . 5 𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)
9971, 98jctir 523 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
100993expia 1117 . . 3 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))))
101100rexlimivv 3292 . 2 (∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
102 elq 12349 . 2 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛))
103 fveq2 6669 . . . . . 6 (𝑥 = 𝑦 → (1st𝑥) = (1st𝑦))
104 fveq2 6669 . . . . . 6 (𝑥 = 𝑦 → (2nd𝑥) = (2nd𝑦))
105103, 104oveq12d 7173 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) gcd (2nd𝑥)) = ((1st𝑦) gcd (2nd𝑦)))
106105eqeq1d 2823 . . . 4 (𝑥 = 𝑦 → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((1st𝑦) gcd (2nd𝑦)) = 1))
107103, 104oveq12d 7173 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
108107eqeq2d 2832 . . . 4 (𝑥 = 𝑦 → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑦) / (2nd𝑦))))
109106, 108anbi12d 632 . . 3 (𝑥 = 𝑦 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))))
110109reu4 3721 . 2 (∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
111101, 102, 1103imtr4i 294 1 (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  wral 3138  wrex 3139  ∃!wreu 3140  cop 4572   class class class wbr 5065   × cxp 5552  cfv 6354  (class class class)co 7155  1st c1st 7686  2nd c2nd 7687  cc 10534  cr 10535  0cc0 10536  1c1 10537   · cmul 10541   < clt 10674   / cdiv 11296  cn 11637  0cn0 11896  cz 11980  cq 12347  cdvds 15606   gcd cgcd 15842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pow 5265  ax-pr 5329  ax-un 7460  ax-cnex 10592  ax-resscn 10593  ax-1cn 10594  ax-icn 10595  ax-addcl 10596  ax-addrcl 10597  ax-mulcl 10598  ax-mulrcl 10599  ax-mulcom 10600  ax-addass 10601  ax-mulass 10602  ax-distr 10603  ax-i2m1 10604  ax-1ne0 10605  ax-1rid 10606  ax-rnegex 10607  ax-rrecex 10608  ax-cnre 10609  ax-pre-lttri 10610  ax-pre-lttrn 10611  ax-pre-ltadd 10612  ax-pre-mulgt0 10613  ax-pre-sup 10614
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-iun 4920  df-br 5066  df-opab 5128  df-mpt 5146  df-tr 5172  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7113  df-ov 7158  df-oprab 7159  df-mpo 7160  df-om 7580  df-1st 7688  df-2nd 7689  df-wrecs 7946  df-recs 8007  df-rdg 8045  df-er 8288  df-en 8509  df-dom 8510  df-sdom 8511  df-sup 8905  df-inf 8906  df-pnf 10676  df-mnf 10677  df-xr 10678  df-ltxr 10679  df-le 10680  df-sub 10871  df-neg 10872  df-div 11297  df-nn 11638  df-2 11699  df-3 11700  df-n0 11897  df-z 11981  df-uz 12243  df-q 12348  df-rp 12389  df-fl 13161  df-mod 13237  df-seq 13369  df-exp 13429  df-cj 14457  df-re 14458  df-im 14459  df-sqrt 14593  df-abs 14594  df-dvds 15607  df-gcd 15843
This theorem is referenced by:  qnumdencl  16078  qnumdenbi  16083
  Copyright terms: Public domain W3C validator