MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsel Structured version   Visualization version   GIF version

Theorem qsel 8379
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)

Proof of Theorem qsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2824 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2904 . . . 4 ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅𝐶𝐵))
3 eqeq1 2828 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅𝐵 = [𝐶]𝑅))
42, 3imbi12d 347 . . 3 ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶𝐵𝐵 = [𝐶]𝑅)))
5 elecg 8335 . . . . . 6 ((𝐶 ∈ [𝑥]𝑅𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
65elvd 3503 . . . . 5 (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
76ibi 269 . . . 4 (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶)
8 simpll 765 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋)
9 simpr 487 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶)
108, 9erthi 8343 . . . . 5 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅)
1110ex 415 . . . 4 ((𝑅 Er 𝑋𝑥𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅))
127, 11syl5 34 . . 3 ((𝑅 Er 𝑋𝑥𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅))
131, 4, 12ectocld 8367 . 2 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅)) → (𝐶𝐵𝐵 = [𝐶]𝑅))
14133impia 1113 1 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497   class class class wbr 5069   Er wer 8289  [cec 8290   / cqs 8291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pr 5333
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-sn 4571  df-pr 4573  df-op 4577  df-br 5070  df-opab 5132  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-er 8292  df-ec 8294  df-qs 8298
This theorem is referenced by:  frgpnabllem2  18997  prter3  36022
  Copyright terms: Public domain W3C validator