MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qsssubdrg Structured version   Visualization version   GIF version

Theorem qsssubdrg 20598
Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015.)
Assertion
Ref Expression
qsssubdrg ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)

Proof of Theorem qsssubdrg
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 12344 . . 3 (𝑧 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦))
2 drngring 19503 . . . . . . . 8 ((ℂflds 𝑅) ∈ DivRing → (ℂflds 𝑅) ∈ Ring)
32ad2antlr 725 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (ℂflds 𝑅) ∈ Ring)
4 zsssubrg 20597 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → ℤ ⊆ 𝑅)
54ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ 𝑅)
6 eqid 2821 . . . . . . . . . . 11 (ℂflds 𝑅) = (ℂflds 𝑅)
76subrgbas 19538 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 𝑅 = (Base‘(ℂflds 𝑅)))
87ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 = (Base‘(ℂflds 𝑅)))
95, 8sseqtrd 4006 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → ℤ ⊆ (Base‘(ℂflds 𝑅)))
10 simprl 769 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ ℤ)
119, 10sseldd 3967 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥 ∈ (Base‘(ℂflds 𝑅)))
12 nnz 11998 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ∈ ℤ)
1312ad2antll 727 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ ℤ)
149, 13sseldd 3967 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Base‘(ℂflds 𝑅)))
15 nnne0 11665 . . . . . . . . . 10 (𝑦 ∈ ℕ → 𝑦 ≠ 0)
1615ad2antll 727 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ 0)
17 cnfld0 20563 . . . . . . . . . . 11 0 = (0g‘ℂfld)
186, 17subrg0 19536 . . . . . . . . . 10 (𝑅 ∈ (SubRing‘ℂfld) → 0 = (0g‘(ℂflds 𝑅)))
1918ad2antrr 724 . . . . . . . . 9 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 0 = (0g‘(ℂflds 𝑅)))
2016, 19neeqtrd 3085 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ≠ (0g‘(ℂflds 𝑅)))
21 eqid 2821 . . . . . . . . . 10 (Base‘(ℂflds 𝑅)) = (Base‘(ℂflds 𝑅))
22 eqid 2821 . . . . . . . . . 10 (Unit‘(ℂflds 𝑅)) = (Unit‘(ℂflds 𝑅))
23 eqid 2821 . . . . . . . . . 10 (0g‘(ℂflds 𝑅)) = (0g‘(ℂflds 𝑅))
2421, 22, 23drngunit 19501 . . . . . . . . 9 ((ℂflds 𝑅) ∈ DivRing → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2524ad2antlr 725 . . . . . . . 8 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑦 ∈ (Unit‘(ℂflds 𝑅)) ↔ (𝑦 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ≠ (0g‘(ℂflds 𝑅)))))
2614, 20, 25mpbir2and 711 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑦 ∈ (Unit‘(ℂflds 𝑅)))
27 eqid 2821 . . . . . . . 8 (/r‘(ℂflds 𝑅)) = (/r‘(ℂflds 𝑅))
2821, 22, 27dvrcl 19430 . . . . . . 7 (((ℂflds 𝑅) ∈ Ring ∧ 𝑥 ∈ (Base‘(ℂflds 𝑅)) ∧ 𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
293, 11, 26, 28syl3anc 1367 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥(/r‘(ℂflds 𝑅))𝑦) ∈ (Base‘(ℂflds 𝑅)))
30 simpll 765 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑅 ∈ (SubRing‘ℂfld))
315, 10sseldd 3967 . . . . . . 7 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → 𝑥𝑅)
32 cnflddiv 20569 . . . . . . . 8 / = (/r‘ℂfld)
336, 32, 22, 27subrgdv 19546 . . . . . . 7 ((𝑅 ∈ (SubRing‘ℂfld) ∧ 𝑥𝑅𝑦 ∈ (Unit‘(ℂflds 𝑅))) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3430, 31, 26, 33syl3anc 1367 . . . . . 6 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) = (𝑥(/r‘(ℂflds 𝑅))𝑦))
3529, 34, 83eltr4d 2928 . . . . 5 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑥 / 𝑦) ∈ 𝑅)
36 eleq1 2900 . . . . 5 (𝑧 = (𝑥 / 𝑦) → (𝑧𝑅 ↔ (𝑥 / 𝑦) ∈ 𝑅))
3735, 36syl5ibrcom 249 . . . 4 (((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
3837rexlimdvva 3294 . . 3 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑧 = (𝑥 / 𝑦) → 𝑧𝑅))
391, 38syl5bi 244 . 2 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → (𝑧 ∈ ℚ → 𝑧𝑅))
4039ssrdv 3972 1 ((𝑅 ∈ (SubRing‘ℂfld) ∧ (ℂflds 𝑅) ∈ DivRing) → ℚ ⊆ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  wne 3016  wrex 3139  wss 3935  cfv 6349  (class class class)co 7150  0cc0 10531   / cdiv 11291  cn 11632  cz 11975  cq 12342  Basecbs 16477  s cress 16478  0gc0g 16707  Ringcrg 19291  Unitcui 19383  /rcdvr 19426  DivRingcdr 19496  SubRingcsubrg 19525  fldccnfld 20539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-q 12343  df-fz 12887  df-seq 13364  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-starv 16574  df-tset 16578  df-ple 16579  df-ds 16581  df-unif 16582  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mulg 18219  df-subg 18270  df-cmn 18902  df-mgp 19234  df-ur 19246  df-ring 19293  df-cring 19294  df-oppr 19367  df-dvdsr 19385  df-unit 19386  df-invr 19416  df-dvr 19427  df-drng 19498  df-subrg 19527  df-cnfld 20540
This theorem is referenced by:  cphqss  23786  resscdrg  23955
  Copyright terms: Public domain W3C validator