MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopkgen Structured version   Visualization version   GIF version

Theorem qtopkgen 22246
Description: A quotient of a compactly generated space is compactly generated. (Contributed by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
qtopcmp.1 𝑋 = 𝐽
Assertion
Ref Expression
qtopkgen ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)

Proof of Theorem qtopkgen
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 kgentop 22078 . . 3 (𝐽 ∈ ran 𝑘Gen → 𝐽 ∈ Top)
2 qtopcmp.1 . . . 4 𝑋 = 𝐽
32qtoptop 22236 . . 3 ((𝐽 ∈ Top ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
41, 3sylan 580 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ Top)
5 elssuni 4859 . . . . . . . 8 (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
65adantl 482 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝑘Gen‘(𝐽 qTop 𝐹)))
74adantr 481 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) ∈ Top)
8 eqid 2818 . . . . . . . . 9 (𝐽 qTop 𝐹) = (𝐽 qTop 𝐹)
98kgenuni 22075 . . . . . . . 8 ((𝐽 qTop 𝐹) ∈ Top → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
107, 9syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 qTop 𝐹) = (𝑘Gen‘(𝐽 qTop 𝐹)))
116, 10sseqtrrd 4005 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 (𝐽 qTop 𝐹))
12 simpll 763 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ ran 𝑘Gen)
1312, 1syl 17 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ Top)
14 simplr 765 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 Fn 𝑋)
15 dffn4 6589 . . . . . . . 8 (𝐹 Fn 𝑋𝐹:𝑋onto→ran 𝐹)
1614, 15sylib 219 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹:𝑋onto→ran 𝐹)
172qtopuni 22238 . . . . . . 7 ((𝐽 ∈ Top ∧ 𝐹:𝑋onto→ran 𝐹) → ran 𝐹 = (𝐽 qTop 𝐹))
1813, 16, 17syl2anc 584 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → ran 𝐹 = (𝐽 qTop 𝐹))
1911, 18sseqtrrd 4005 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ⊆ ran 𝐹)
202toptopon 21453 . . . . . . . . 9 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
2113, 20sylib 219 . . . . . . . 8 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐽 ∈ (TopOn‘𝑋))
22 qtopid 22241 . . . . . . . 8 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹 Fn 𝑋) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
2321, 14, 22syl2anc 584 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝐽 qTop 𝐹)))
24 kgencn3 22094 . . . . . . . 8 ((𝐽 ∈ ran 𝑘Gen ∧ (𝐽 qTop 𝐹) ∈ Top) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2512, 7, 24syl2anc 584 . . . . . . 7 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐽 Cn (𝐽 qTop 𝐹)) = (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
2623, 25eleqtrd 2912 . . . . . 6 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))))
27 cnima 21801 . . . . . 6 ((𝐹 ∈ (𝐽 Cn (𝑘Gen‘(𝐽 qTop 𝐹))) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
2826, 27sylancom 588 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝐹𝑥) ∈ 𝐽)
292elqtop2 22237 . . . . . 6 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹:𝑋onto→ran 𝐹) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3012, 16, 29syl2anc 584 . . . . 5 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → (𝑥 ∈ (𝐽 qTop 𝐹) ↔ (𝑥 ⊆ ran 𝐹 ∧ (𝐹𝑥) ∈ 𝐽)))
3119, 28, 30mpbir2and 709 . . . 4 (((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) ∧ 𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹))) → 𝑥 ∈ (𝐽 qTop 𝐹))
3231ex 413 . . 3 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑥 ∈ (𝑘Gen‘(𝐽 qTop 𝐹)) → 𝑥 ∈ (𝐽 qTop 𝐹)))
3332ssrdv 3970 . 2 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹))
34 iskgen2 22084 . 2 ((𝐽 qTop 𝐹) ∈ ran 𝑘Gen ↔ ((𝐽 qTop 𝐹) ∈ Top ∧ (𝑘Gen‘(𝐽 qTop 𝐹)) ⊆ (𝐽 qTop 𝐹)))
354, 33, 34sylanbrc 583 1 ((𝐽 ∈ ran 𝑘Gen ∧ 𝐹 Fn 𝑋) → (𝐽 qTop 𝐹) ∈ ran 𝑘Gen)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wss 3933   cuni 4830  ccnv 5547  ran crn 5549  cima 5551   Fn wfn 6343  ontowfo 6346  cfv 6348  (class class class)co 7145   qTop cqtop 16764  Topctop 21429  TopOnctopon 21446   Cn ccn 21760  𝑘Genckgen 22069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-fin 8501  df-fi 8863  df-rest 16684  df-topgen 16705  df-qtop 16768  df-top 21430  df-topon 21447  df-bases 21482  df-cn 21763  df-cmp 21923  df-kgen 22070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator