MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1 Structured version   Visualization version   GIF version

Theorem quart1 24782
Description: Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart1.a (𝜑𝐴 ∈ ℂ)
quart1.b (𝜑𝐵 ∈ ℂ)
quart1.c (𝜑𝐶 ∈ ℂ)
quart1.d (𝜑𝐷 ∈ ℂ)
quart1.p (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
quart1.q (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
quart1.r (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
quart1.x (𝜑𝑋 ∈ ℂ)
quart1.y (𝜑𝑌 = (𝑋 + (𝐴 / 4)))
Assertion
Ref Expression
quart1 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = (((𝑌↑4) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅)))

Proof of Theorem quart1
StepHypRef Expression
1 quart1.y . . . . . . 7 (𝜑𝑌 = (𝑋 + (𝐴 / 4)))
21oveq1d 6828 . . . . . 6 (𝜑 → (𝑌↑4) = ((𝑋 + (𝐴 / 4))↑4))
3 quart1.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
4 quart1.a . . . . . . . 8 (𝜑𝐴 ∈ ℂ)
5 4cn 11290 . . . . . . . . 9 4 ∈ ℂ
65a1i 11 . . . . . . . 8 (𝜑 → 4 ∈ ℂ)
7 4ne0 11309 . . . . . . . . 9 4 ≠ 0
87a1i 11 . . . . . . . 8 (𝜑 → 4 ≠ 0)
94, 6, 8divcld 10993 . . . . . . 7 (𝜑 → (𝐴 / 4) ∈ ℂ)
10 binom4 24776 . . . . . . 7 ((𝑋 ∈ ℂ ∧ (𝐴 / 4) ∈ ℂ) → ((𝑋 + (𝐴 / 4))↑4) = (((𝑋↑4) + (4 · ((𝑋↑3) · (𝐴 / 4)))) + ((6 · ((𝑋↑2) · ((𝐴 / 4)↑2))) + ((4 · (𝑋 · ((𝐴 / 4)↑3))) + ((𝐴 / 4)↑4)))))
113, 9, 10syl2anc 696 . . . . . 6 (𝜑 → ((𝑋 + (𝐴 / 4))↑4) = (((𝑋↑4) + (4 · ((𝑋↑3) · (𝐴 / 4)))) + ((6 · ((𝑋↑2) · ((𝐴 / 4)↑2))) + ((4 · (𝑋 · ((𝐴 / 4)↑3))) + ((𝐴 / 4)↑4)))))
12 3nn0 11502 . . . . . . . . . . 11 3 ∈ ℕ0
13 expcl 13072 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑋↑3) ∈ ℂ)
143, 12, 13sylancl 697 . . . . . . . . . 10 (𝜑 → (𝑋↑3) ∈ ℂ)
156, 14, 9mul12d 10437 . . . . . . . . 9 (𝜑 → (4 · ((𝑋↑3) · (𝐴 / 4))) = ((𝑋↑3) · (4 · (𝐴 / 4))))
164, 6, 8divcan2d 10995 . . . . . . . . . 10 (𝜑 → (4 · (𝐴 / 4)) = 𝐴)
1716oveq2d 6829 . . . . . . . . 9 (𝜑 → ((𝑋↑3) · (4 · (𝐴 / 4))) = ((𝑋↑3) · 𝐴))
1814, 4mulcomd 10253 . . . . . . . . 9 (𝜑 → ((𝑋↑3) · 𝐴) = (𝐴 · (𝑋↑3)))
1915, 17, 183eqtrd 2798 . . . . . . . 8 (𝜑 → (4 · ((𝑋↑3) · (𝐴 / 4))) = (𝐴 · (𝑋↑3)))
2019oveq2d 6829 . . . . . . 7 (𝜑 → ((𝑋↑4) + (4 · ((𝑋↑3) · (𝐴 / 4)))) = ((𝑋↑4) + (𝐴 · (𝑋↑3))))
21 6nn 11381 . . . . . . . . . . . 12 6 ∈ ℕ
2221nncni 11222 . . . . . . . . . . 11 6 ∈ ℂ
2322a1i 11 . . . . . . . . . 10 (𝜑 → 6 ∈ ℂ)
249sqcld 13200 . . . . . . . . . 10 (𝜑 → ((𝐴 / 4)↑2) ∈ ℂ)
253sqcld 13200 . . . . . . . . . 10 (𝜑 → (𝑋↑2) ∈ ℂ)
2623, 24, 25mulassd 10255 . . . . . . . . 9 (𝜑 → ((6 · ((𝐴 / 4)↑2)) · (𝑋↑2)) = (6 · (((𝐴 / 4)↑2) · (𝑋↑2))))
27 3cn 11287 . . . . . . . . . . . . . . . 16 3 ∈ ℂ
28 2cn 11283 . . . . . . . . . . . . . . . 16 2 ∈ ℂ
29 3t2e6 11371 . . . . . . . . . . . . . . . 16 (3 · 2) = 6
3027, 28, 29mulcomli 10239 . . . . . . . . . . . . . . 15 (2 · 3) = 6
31 8cn 11298 . . . . . . . . . . . . . . . 16 8 ∈ ℂ
32 8t2e16 11846 . . . . . . . . . . . . . . . 16 (8 · 2) = 16
3331, 28, 32mulcomli 10239 . . . . . . . . . . . . . . 15 (2 · 8) = 16
3430, 33oveq12i 6825 . . . . . . . . . . . . . 14 ((2 · 3) / (2 · 8)) = (6 / 16)
35 8nn 11383 . . . . . . . . . . . . . . . . 17 8 ∈ ℕ
3635nnne0i 11247 . . . . . . . . . . . . . . . 16 8 ≠ 0
3731, 36pm3.2i 470 . . . . . . . . . . . . . . 15 (8 ∈ ℂ ∧ 8 ≠ 0)
38 2cnne0 11434 . . . . . . . . . . . . . . 15 (2 ∈ ℂ ∧ 2 ≠ 0)
39 divcan5 10919 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (8 ∈ ℂ ∧ 8 ≠ 0) ∧ (2 ∈ ℂ ∧ 2 ≠ 0)) → ((2 · 3) / (2 · 8)) = (3 / 8))
4027, 37, 38, 39mp3an 1573 . . . . . . . . . . . . . 14 ((2 · 3) / (2 · 8)) = (3 / 8)
4134, 40eqtr3i 2784 . . . . . . . . . . . . 13 (6 / 16) = (3 / 8)
4241oveq2i 6824 . . . . . . . . . . . 12 ((𝐴↑2) · (6 / 16)) = ((𝐴↑2) · (3 / 8))
434sqcld 13200 . . . . . . . . . . . . 13 (𝜑 → (𝐴↑2) ∈ ℂ)
44 1nn0 11500 . . . . . . . . . . . . . . . 16 1 ∈ ℕ0
4544, 21decnncl 11710 . . . . . . . . . . . . . . 15 16 ∈ ℕ
4645nncni 11222 . . . . . . . . . . . . . 14 16 ∈ ℂ
4746a1i 11 . . . . . . . . . . . . 13 (𝜑16 ∈ ℂ)
4845nnne0i 11247 . . . . . . . . . . . . . 14 16 ≠ 0
4948a1i 11 . . . . . . . . . . . . 13 (𝜑16 ≠ 0)
5043, 23, 47, 49div12d 11029 . . . . . . . . . . . 12 (𝜑 → ((𝐴↑2) · (6 / 16)) = (6 · ((𝐴↑2) / 16)))
5142, 50syl5eqr 2808 . . . . . . . . . . 11 (𝜑 → ((𝐴↑2) · (3 / 8)) = (6 · ((𝐴↑2) / 16)))
5227, 31, 36divcli 10959 . . . . . . . . . . . 12 (3 / 8) ∈ ℂ
53 mulcom 10214 . . . . . . . . . . . 12 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) = ((𝐴↑2) · (3 / 8)))
5452, 43, 53sylancr 698 . . . . . . . . . . 11 (𝜑 → ((3 / 8) · (𝐴↑2)) = ((𝐴↑2) · (3 / 8)))
554, 6, 8sqdivd 13215 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 / 4)↑2) = ((𝐴↑2) / (4↑2)))
565sqvali 13137 . . . . . . . . . . . . . . 15 (4↑2) = (4 · 4)
57 4t4e16 11825 . . . . . . . . . . . . . . 15 (4 · 4) = 16
5856, 57eqtri 2782 . . . . . . . . . . . . . 14 (4↑2) = 16
5958oveq2i 6824 . . . . . . . . . . . . 13 ((𝐴↑2) / (4↑2)) = ((𝐴↑2) / 16)
6055, 59syl6eq 2810 . . . . . . . . . . . 12 (𝜑 → ((𝐴 / 4)↑2) = ((𝐴↑2) / 16))
6160oveq2d 6829 . . . . . . . . . . 11 (𝜑 → (6 · ((𝐴 / 4)↑2)) = (6 · ((𝐴↑2) / 16)))
6251, 54, 613eqtr4d 2804 . . . . . . . . . 10 (𝜑 → ((3 / 8) · (𝐴↑2)) = (6 · ((𝐴 / 4)↑2)))
6362oveq1d 6828 . . . . . . . . 9 (𝜑 → (((3 / 8) · (𝐴↑2)) · (𝑋↑2)) = ((6 · ((𝐴 / 4)↑2)) · (𝑋↑2)))
6425, 24mulcomd 10253 . . . . . . . . . 10 (𝜑 → ((𝑋↑2) · ((𝐴 / 4)↑2)) = (((𝐴 / 4)↑2) · (𝑋↑2)))
6564oveq2d 6829 . . . . . . . . 9 (𝜑 → (6 · ((𝑋↑2) · ((𝐴 / 4)↑2))) = (6 · (((𝐴 / 4)↑2) · (𝑋↑2))))
6626, 63, 653eqtr4rd 2805 . . . . . . . 8 (𝜑 → (6 · ((𝑋↑2) · ((𝐴 / 4)↑2))) = (((3 / 8) · (𝐴↑2)) · (𝑋↑2)))
67 expcl 13072 . . . . . . . . . . . 12 (((𝐴 / 4) ∈ ℂ ∧ 3 ∈ ℕ0) → ((𝐴 / 4)↑3) ∈ ℂ)
689, 12, 67sylancl 697 . . . . . . . . . . 11 (𝜑 → ((𝐴 / 4)↑3) ∈ ℂ)
696, 3, 68mul12d 10437 . . . . . . . . . 10 (𝜑 → (4 · (𝑋 · ((𝐴 / 4)↑3))) = (𝑋 · (4 · ((𝐴 / 4)↑3))))
706, 68mulcld 10252 . . . . . . . . . . 11 (𝜑 → (4 · ((𝐴 / 4)↑3)) ∈ ℂ)
713, 70mulcomd 10253 . . . . . . . . . 10 (𝜑 → (𝑋 · (4 · ((𝐴 / 4)↑3))) = ((4 · ((𝐴 / 4)↑3)) · 𝑋))
72 df-3 11272 . . . . . . . . . . . . . . . . 17 3 = (2 + 1)
7372oveq2i 6824 . . . . . . . . . . . . . . . 16 (4↑3) = (4↑(2 + 1))
74 2nn0 11501 . . . . . . . . . . . . . . . . 17 2 ∈ ℕ0
75 expp1 13061 . . . . . . . . . . . . . . . . 17 ((4 ∈ ℂ ∧ 2 ∈ ℕ0) → (4↑(2 + 1)) = ((4↑2) · 4))
765, 74, 75mp2an 710 . . . . . . . . . . . . . . . 16 (4↑(2 + 1)) = ((4↑2) · 4)
7758oveq1i 6823 . . . . . . . . . . . . . . . 16 ((4↑2) · 4) = (16 · 4)
7873, 76, 773eqtri 2786 . . . . . . . . . . . . . . 15 (4↑3) = (16 · 4)
7978oveq2i 6824 . . . . . . . . . . . . . 14 ((𝐴↑3) / (4↑3)) = ((𝐴↑3) / (16 · 4))
8012a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → 3 ∈ ℕ0)
814, 6, 8, 80expdivd 13216 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴 / 4)↑3) = ((𝐴↑3) / (4↑3)))
82 expcl 13072 . . . . . . . . . . . . . . . 16 ((𝐴 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝐴↑3) ∈ ℂ)
834, 12, 82sylancl 697 . . . . . . . . . . . . . . 15 (𝜑 → (𝐴↑3) ∈ ℂ)
8483, 47, 6, 49, 8divdiv1d 11024 . . . . . . . . . . . . . 14 (𝜑 → (((𝐴↑3) / 16) / 4) = ((𝐴↑3) / (16 · 4)))
8579, 81, 843eqtr4a 2820 . . . . . . . . . . . . 13 (𝜑 → ((𝐴 / 4)↑3) = (((𝐴↑3) / 16) / 4))
8685oveq2d 6829 . . . . . . . . . . . 12 (𝜑 → (4 · ((𝐴 / 4)↑3)) = (4 · (((𝐴↑3) / 16) / 4)))
8732oveq2i 6824 . . . . . . . . . . . . 13 ((𝐴↑3) / (8 · 2)) = ((𝐴↑3) / 16)
8831a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 8 ∈ ℂ)
8928a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
9036a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 8 ≠ 0)
91 2ne0 11305 . . . . . . . . . . . . . . 15 2 ≠ 0
9291a1i 11 . . . . . . . . . . . . . 14 (𝜑 → 2 ≠ 0)
9383, 88, 89, 90, 92divdiv1d 11024 . . . . . . . . . . . . 13 (𝜑 → (((𝐴↑3) / 8) / 2) = ((𝐴↑3) / (8 · 2)))
9483, 47, 49divcld 10993 . . . . . . . . . . . . . 14 (𝜑 → ((𝐴↑3) / 16) ∈ ℂ)
9594, 6, 8divcan2d 10995 . . . . . . . . . . . . 13 (𝜑 → (4 · (((𝐴↑3) / 16) / 4)) = ((𝐴↑3) / 16))
9687, 93, 953eqtr4a 2820 . . . . . . . . . . . 12 (𝜑 → (((𝐴↑3) / 8) / 2) = (4 · (((𝐴↑3) / 16) / 4)))
9786, 96eqtr4d 2797 . . . . . . . . . . 11 (𝜑 → (4 · ((𝐴 / 4)↑3)) = (((𝐴↑3) / 8) / 2))
9897oveq1d 6828 . . . . . . . . . 10 (𝜑 → ((4 · ((𝐴 / 4)↑3)) · 𝑋) = ((((𝐴↑3) / 8) / 2) · 𝑋))
9969, 71, 983eqtrd 2798 . . . . . . . . 9 (𝜑 → (4 · (𝑋 · ((𝐴 / 4)↑3))) = ((((𝐴↑3) / 8) / 2) · 𝑋))
100 4nn0 11503 . . . . . . . . . . . 12 4 ∈ ℕ0
101100a1i 11 . . . . . . . . . . 11 (𝜑 → 4 ∈ ℕ0)
1024, 6, 8, 101expdivd 13216 . . . . . . . . . 10 (𝜑 → ((𝐴 / 4)↑4) = ((𝐴↑4) / (4↑4)))
103 expmul 13099 . . . . . . . . . . . . . . 15 ((2 ∈ ℂ ∧ 2 ∈ ℕ0 ∧ 4 ∈ ℕ0) → (2↑(2 · 4)) = ((2↑2)↑4))
10428, 74, 100, 103mp3an 1573 . . . . . . . . . . . . . 14 (2↑(2 · 4)) = ((2↑2)↑4)
105 4t2e8 11373 . . . . . . . . . . . . . . . 16 (4 · 2) = 8
1065, 28, 105mulcomli 10239 . . . . . . . . . . . . . . 15 (2 · 4) = 8
107106oveq2i 6824 . . . . . . . . . . . . . 14 (2↑(2 · 4)) = (2↑8)
108104, 107eqtr3i 2784 . . . . . . . . . . . . 13 ((2↑2)↑4) = (2↑8)
109 sq2 13154 . . . . . . . . . . . . . 14 (2↑2) = 4
110109oveq1i 6823 . . . . . . . . . . . . 13 ((2↑2)↑4) = (4↑4)
111108, 110eqtr3i 2784 . . . . . . . . . . . 12 (2↑8) = (4↑4)
112 2exp8 15998 . . . . . . . . . . . 12 (2↑8) = 256
113111, 112eqtr3i 2784 . . . . . . . . . . 11 (4↑4) = 256
114113oveq2i 6824 . . . . . . . . . 10 ((𝐴↑4) / (4↑4)) = ((𝐴↑4) / 256)
115102, 114syl6eq 2810 . . . . . . . . 9 (𝜑 → ((𝐴 / 4)↑4) = ((𝐴↑4) / 256))
11699, 115oveq12d 6831 . . . . . . . 8 (𝜑 → ((4 · (𝑋 · ((𝐴 / 4)↑3))) + ((𝐴 / 4)↑4)) = (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)))
11766, 116oveq12d 6831 . . . . . . 7 (𝜑 → ((6 · ((𝑋↑2) · ((𝐴 / 4)↑2))) + ((4 · (𝑋 · ((𝐴 / 4)↑3))) + ((𝐴 / 4)↑4))) = ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))))
11820, 117oveq12d 6831 . . . . . 6 (𝜑 → (((𝑋↑4) + (4 · ((𝑋↑3) · (𝐴 / 4)))) + ((6 · ((𝑋↑2) · ((𝐴 / 4)↑2))) + ((4 · (𝑋 · ((𝐴 / 4)↑3))) + ((𝐴 / 4)↑4)))) = (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)))))
1192, 11, 1183eqtrd 2798 . . . . 5 (𝜑 → (𝑌↑4) = (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)))))
120119oveq1d 6828 . . . 4 (𝜑 → ((𝑌↑4) + (𝑃 · (𝑌↑2))) = ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)))) + (𝑃 · (𝑌↑2))))
121 expcl 13072 . . . . . . 7 ((𝑋 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝑋↑4) ∈ ℂ)
1223, 100, 121sylancl 697 . . . . . 6 (𝜑 → (𝑋↑4) ∈ ℂ)
1234, 14mulcld 10252 . . . . . 6 (𝜑 → (𝐴 · (𝑋↑3)) ∈ ℂ)
124122, 123addcld 10251 . . . . 5 (𝜑 → ((𝑋↑4) + (𝐴 · (𝑋↑3))) ∈ ℂ)
125 mulcl 10212 . . . . . . . 8 (((3 / 8) ∈ ℂ ∧ (𝐴↑2) ∈ ℂ) → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
12652, 43, 125sylancr 698 . . . . . . 7 (𝜑 → ((3 / 8) · (𝐴↑2)) ∈ ℂ)
127126, 25mulcld 10252 . . . . . 6 (𝜑 → (((3 / 8) · (𝐴↑2)) · (𝑋↑2)) ∈ ℂ)
12883, 88, 90divcld 10993 . . . . . . . . 9 (𝜑 → ((𝐴↑3) / 8) ∈ ℂ)
129128halfcld 11469 . . . . . . . 8 (𝜑 → (((𝐴↑3) / 8) / 2) ∈ ℂ)
130129, 3mulcld 10252 . . . . . . 7 (𝜑 → ((((𝐴↑3) / 8) / 2) · 𝑋) ∈ ℂ)
131 expcl 13072 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 4 ∈ ℕ0) → (𝐴↑4) ∈ ℂ)
1324, 100, 131sylancl 697 . . . . . . . 8 (𝜑 → (𝐴↑4) ∈ ℂ)
133 5nn0 11504 . . . . . . . . . . . 12 5 ∈ ℕ0
13474, 133deccl 11704 . . . . . . . . . . 11 25 ∈ ℕ0
135134, 21decnncl 11710 . . . . . . . . . 10 256 ∈ ℕ
136135nncni 11222 . . . . . . . . 9 256 ∈ ℂ
137136a1i 11 . . . . . . . 8 (𝜑256 ∈ ℂ)
138135nnne0i 11247 . . . . . . . . 9 256 ≠ 0
139138a1i 11 . . . . . . . 8 (𝜑256 ≠ 0)
140132, 137, 139divcld 10993 . . . . . . 7 (𝜑 → ((𝐴↑4) / 256) ∈ ℂ)
141130, 140addcld 10251 . . . . . 6 (𝜑 → (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) ∈ ℂ)
142127, 141addcld 10251 . . . . 5 (𝜑 → ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) ∈ ℂ)
143 quart1.b . . . . . . . 8 (𝜑𝐵 ∈ ℂ)
144 quart1.c . . . . . . . 8 (𝜑𝐶 ∈ ℂ)
145 quart1.d . . . . . . . 8 (𝜑𝐷 ∈ ℂ)
146 quart1.p . . . . . . . 8 (𝜑𝑃 = (𝐵 − ((3 / 8) · (𝐴↑2))))
147 quart1.q . . . . . . . 8 (𝜑𝑄 = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)))
148 quart1.r . . . . . . . 8 (𝜑𝑅 = ((𝐷 − ((𝐶 · 𝐴) / 4)) + ((((𝐴↑2) · 𝐵) / 16) − ((3 / 256) · (𝐴↑4)))))
1494, 143, 144, 145, 146, 147, 148quart1cl 24780 . . . . . . 7 (𝜑 → (𝑃 ∈ ℂ ∧ 𝑄 ∈ ℂ ∧ 𝑅 ∈ ℂ))
150149simp1d 1137 . . . . . 6 (𝜑𝑃 ∈ ℂ)
1513, 9addcld 10251 . . . . . . . 8 (𝜑 → (𝑋 + (𝐴 / 4)) ∈ ℂ)
1521, 151eqeltrd 2839 . . . . . . 7 (𝜑𝑌 ∈ ℂ)
153152sqcld 13200 . . . . . 6 (𝜑 → (𝑌↑2) ∈ ℂ)
154150, 153mulcld 10252 . . . . 5 (𝜑 → (𝑃 · (𝑌↑2)) ∈ ℂ)
155124, 142, 154addassd 10254 . . . 4 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)))) + (𝑃 · (𝑌↑2))) = (((𝑋↑4) + (𝐴 · (𝑋↑3))) + (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2)))))
156120, 155eqtrd 2794 . . 3 (𝜑 → ((𝑌↑4) + (𝑃 · (𝑌↑2))) = (((𝑋↑4) + (𝐴 · (𝑋↑3))) + (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2)))))
157156oveq1d 6828 . 2 (𝜑 → (((𝑌↑4) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅)) = ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2)))) + ((𝑄 · 𝑌) + 𝑅)))
158142, 154addcld 10251 . . 3 (𝜑 → (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) ∈ ℂ)
159149simp2d 1138 . . . . 5 (𝜑𝑄 ∈ ℂ)
160159, 152mulcld 10252 . . . 4 (𝜑 → (𝑄 · 𝑌) ∈ ℂ)
161149simp3d 1139 . . . 4 (𝜑𝑅 ∈ ℂ)
162160, 161addcld 10251 . . 3 (𝜑 → ((𝑄 · 𝑌) + 𝑅) ∈ ℂ)
163124, 158, 162addassd 10254 . 2 (𝜑 → ((((𝑋↑4) + (𝐴 · (𝑋↑3))) + (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2)))) + ((𝑄 · 𝑌) + 𝑅)) = (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅))))
1641oveq1d 6828 . . . . . . . . . 10 (𝜑 → (𝑌↑2) = ((𝑋 + (𝐴 / 4))↑2))
165 binom2 13173 . . . . . . . . . . 11 ((𝑋 ∈ ℂ ∧ (𝐴 / 4) ∈ ℂ) → ((𝑋 + (𝐴 / 4))↑2) = (((𝑋↑2) + (2 · (𝑋 · (𝐴 / 4)))) + ((𝐴 / 4)↑2)))
1663, 9, 165syl2anc 696 . . . . . . . . . 10 (𝜑 → ((𝑋 + (𝐴 / 4))↑2) = (((𝑋↑2) + (2 · (𝑋 · (𝐴 / 4)))) + ((𝐴 / 4)↑2)))
1673, 9mulcld 10252 . . . . . . . . . . . 12 (𝜑 → (𝑋 · (𝐴 / 4)) ∈ ℂ)
168 mulcl 10212 . . . . . . . . . . . 12 ((2 ∈ ℂ ∧ (𝑋 · (𝐴 / 4)) ∈ ℂ) → (2 · (𝑋 · (𝐴 / 4))) ∈ ℂ)
16928, 167, 168sylancr 698 . . . . . . . . . . 11 (𝜑 → (2 · (𝑋 · (𝐴 / 4))) ∈ ℂ)
17025, 169, 24addassd 10254 . . . . . . . . . 10 (𝜑 → (((𝑋↑2) + (2 · (𝑋 · (𝐴 / 4)))) + ((𝐴 / 4)↑2)) = ((𝑋↑2) + ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))
171164, 166, 1703eqtrd 2798 . . . . . . . . 9 (𝜑 → (𝑌↑2) = ((𝑋↑2) + ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))
172171oveq2d 6829 . . . . . . . 8 (𝜑 → (𝑃 · (𝑌↑2)) = (𝑃 · ((𝑋↑2) + ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))))
173169, 24addcld 10251 . . . . . . . . 9 (𝜑 → ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)) ∈ ℂ)
174150, 25, 173adddid 10256 . . . . . . . 8 (𝜑 → (𝑃 · ((𝑋↑2) + ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) = ((𝑃 · (𝑋↑2)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))))
175172, 174eqtrd 2794 . . . . . . 7 (𝜑 → (𝑃 · (𝑌↑2)) = ((𝑃 · (𝑋↑2)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))))
176175oveq2d 6829 . . . . . 6 (𝜑 → (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) = (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + ((𝑃 · (𝑋↑2)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))))
177150, 25mulcld 10252 . . . . . . 7 (𝜑 → (𝑃 · (𝑋↑2)) ∈ ℂ)
178150, 173mulcld 10252 . . . . . . 7 (𝜑 → (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))) ∈ ℂ)
179127, 141, 177, 178add4d 10456 . . . . . 6 (𝜑 → (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + ((𝑃 · (𝑋↑2)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))) = (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (𝑃 · (𝑋↑2))) + ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))))
180126, 150, 25adddird 10257 . . . . . . . 8 (𝜑 → ((((3 / 8) · (𝐴↑2)) + 𝑃) · (𝑋↑2)) = ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (𝑃 · (𝑋↑2))))
181146oveq2d 6829 . . . . . . . . . 10 (𝜑 → (((3 / 8) · (𝐴↑2)) + 𝑃) = (((3 / 8) · (𝐴↑2)) + (𝐵 − ((3 / 8) · (𝐴↑2)))))
182126, 143pncan3d 10587 . . . . . . . . . 10 (𝜑 → (((3 / 8) · (𝐴↑2)) + (𝐵 − ((3 / 8) · (𝐴↑2)))) = 𝐵)
183181, 182eqtrd 2794 . . . . . . . . 9 (𝜑 → (((3 / 8) · (𝐴↑2)) + 𝑃) = 𝐵)
184183oveq1d 6828 . . . . . . . 8 (𝜑 → ((((3 / 8) · (𝐴↑2)) + 𝑃) · (𝑋↑2)) = (𝐵 · (𝑋↑2)))
185180, 184eqtr3d 2796 . . . . . . 7 (𝜑 → ((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (𝑃 · (𝑋↑2))) = (𝐵 · (𝑋↑2)))
186185oveq1d 6828 . . . . . 6 (𝜑 → (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (𝑃 · (𝑋↑2))) + ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))) = ((𝐵 · (𝑋↑2)) + ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))))
187176, 179, 1863eqtrd 2798 . . . . 5 (𝜑 → (((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) = ((𝐵 · (𝑋↑2)) + ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))))
188187oveq1d 6828 . . . 4 (𝜑 → ((((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅)) = (((𝐵 · (𝑋↑2)) + ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))) + ((𝑄 · 𝑌) + 𝑅)))
189143, 25mulcld 10252 . . . . 5 (𝜑 → (𝐵 · (𝑋↑2)) ∈ ℂ)
190141, 178addcld 10251 . . . . 5 (𝜑 → ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) ∈ ℂ)
191189, 190, 162addassd 10254 . . . 4 (𝜑 → (((𝐵 · (𝑋↑2)) + ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))))) + ((𝑄 · 𝑌) + 𝑅)) = ((𝐵 · (𝑋↑2)) + (((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) + ((𝑄 · 𝑌) + 𝑅))))
1924, 143mulcld 10252 . . . . . . . . . 10 (𝜑 → (𝐴 · 𝐵) ∈ ℂ)
193192halfcld 11469 . . . . . . . . 9 (𝜑 → ((𝐴 · 𝐵) / 2) ∈ ℂ)
194193, 128subcld 10584 . . . . . . . 8 (𝜑 → (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) ∈ ℂ)
195194, 3mulcld 10252 . . . . . . 7 (𝜑 → ((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) ∈ ℂ)
196150, 24mulcld 10252 . . . . . . . 8 (𝜑 → (𝑃 · ((𝐴 / 4)↑2)) ∈ ℂ)
197140, 196addcld 10251 . . . . . . 7 (𝜑 → (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) ∈ ℂ)
198159, 3mulcld 10252 . . . . . . 7 (𝜑 → (𝑄 · 𝑋) ∈ ℂ)
199159, 9mulcld 10252 . . . . . . . 8 (𝜑 → (𝑄 · (𝐴 / 4)) ∈ ℂ)
200199, 161addcld 10251 . . . . . . 7 (𝜑 → ((𝑄 · (𝐴 / 4)) + 𝑅) ∈ ℂ)
201195, 197, 198, 200add4d 10456 . . . . . 6 (𝜑 → ((((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))) + ((𝑄 · 𝑋) + ((𝑄 · (𝐴 / 4)) + 𝑅))) = ((((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (𝑄 · 𝑋)) + ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅))))
202150, 169, 24adddid 10256 . . . . . . . . 9 (𝜑 → (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2))) = ((𝑃 · (2 · (𝑋 · (𝐴 / 4)))) + (𝑃 · ((𝐴 / 4)↑2))))
203202oveq2d 6829 . . . . . . . 8 (𝜑 → ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) = ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + ((𝑃 · (2 · (𝑋 · (𝐴 / 4)))) + (𝑃 · ((𝐴 / 4)↑2)))))
204150, 169mulcld 10252 . . . . . . . . 9 (𝜑 → (𝑃 · (2 · (𝑋 · (𝐴 / 4)))) ∈ ℂ)
205130, 140, 204, 196add4d 10456 . . . . . . . 8 (𝜑 → ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + ((𝑃 · (2 · (𝑋 · (𝐴 / 4)))) + (𝑃 · ((𝐴 / 4)↑2)))) = ((((((𝐴↑3) / 8) / 2) · 𝑋) + (𝑃 · (2 · (𝑋 · (𝐴 / 4))))) + (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
2064, 89, 89, 92, 92divdiv1d 11024 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝐴 / 2) / 2) = (𝐴 / (2 · 2)))
207 2t2e4 11369 . . . . . . . . . . . . . . . . . . 19 (2 · 2) = 4
208207oveq2i 6824 . . . . . . . . . . . . . . . . . 18 (𝐴 / (2 · 2)) = (𝐴 / 4)
209206, 208syl6eq 2810 . . . . . . . . . . . . . . . . 17 (𝜑 → ((𝐴 / 2) / 2) = (𝐴 / 4))
210209oveq2d 6829 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · ((𝐴 / 2) / 2)) = (2 · (𝐴 / 4)))
2114halfcld 11469 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐴 / 2) ∈ ℂ)
212211, 89, 92divcan2d 10995 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · ((𝐴 / 2) / 2)) = (𝐴 / 2))
213210, 212eqtr3d 2796 . . . . . . . . . . . . . . 15 (𝜑 → (2 · (𝐴 / 4)) = (𝐴 / 2))
214213oveq2d 6829 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 · (2 · (𝐴 / 4))) = (𝑋 · (𝐴 / 2)))
2153, 211mulcomd 10253 . . . . . . . . . . . . . 14 (𝜑 → (𝑋 · (𝐴 / 2)) = ((𝐴 / 2) · 𝑋))
216214, 215eqtrd 2794 . . . . . . . . . . . . 13 (𝜑 → (𝑋 · (2 · (𝐴 / 4))) = ((𝐴 / 2) · 𝑋))
217216oveq2d 6829 . . . . . . . . . . . 12 (𝜑 → (𝑃 · (𝑋 · (2 · (𝐴 / 4)))) = (𝑃 · ((𝐴 / 2) · 𝑋)))
21889, 3, 9mul12d 10437 . . . . . . . . . . . . 13 (𝜑 → (2 · (𝑋 · (𝐴 / 4))) = (𝑋 · (2 · (𝐴 / 4))))
219218oveq2d 6829 . . . . . . . . . . . 12 (𝜑 → (𝑃 · (2 · (𝑋 · (𝐴 / 4)))) = (𝑃 · (𝑋 · (2 · (𝐴 / 4)))))
220150, 211, 3mulassd 10255 . . . . . . . . . . . 12 (𝜑 → ((𝑃 · (𝐴 / 2)) · 𝑋) = (𝑃 · ((𝐴 / 2) · 𝑋)))
221217, 219, 2203eqtr4d 2804 . . . . . . . . . . 11 (𝜑 → (𝑃 · (2 · (𝑋 · (𝐴 / 4)))) = ((𝑃 · (𝐴 / 2)) · 𝑋))
222221oveq2d 6829 . . . . . . . . . 10 (𝜑 → (((((𝐴↑3) / 8) / 2) · 𝑋) + (𝑃 · (2 · (𝑋 · (𝐴 / 4))))) = (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝑃 · (𝐴 / 2)) · 𝑋)))
223150, 211mulcld 10252 . . . . . . . . . . 11 (𝜑 → (𝑃 · (𝐴 / 2)) ∈ ℂ)
224129, 223, 3adddird 10257 . . . . . . . . . 10 (𝜑 → (((((𝐴↑3) / 8) / 2) + (𝑃 · (𝐴 / 2))) · 𝑋) = (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝑃 · (𝐴 / 2)) · 𝑋)))
225146oveq1d 6828 . . . . . . . . . . . . . 14 (𝜑 → (𝑃 · (𝐴 / 2)) = ((𝐵 − ((3 / 8) · (𝐴↑2))) · (𝐴 / 2)))
226143, 126, 211subdird 10679 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 − ((3 / 8) · (𝐴↑2))) · (𝐴 / 2)) = ((𝐵 · (𝐴 / 2)) − (((3 / 8) · (𝐴↑2)) · (𝐴 / 2))))
227143, 4, 89, 92divassd 11028 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 · 𝐴) / 2) = (𝐵 · (𝐴 / 2)))
228143, 4mulcomd 10253 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝐵 · 𝐴) = (𝐴 · 𝐵))
229228oveq1d 6828 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝐵 · 𝐴) / 2) = ((𝐴 · 𝐵) / 2))
230227, 229eqtr3d 2796 . . . . . . . . . . . . . . 15 (𝜑 → (𝐵 · (𝐴 / 2)) = ((𝐴 · 𝐵) / 2))
23172oveq2i 6824 . . . . . . . . . . . . . . . . . . . . 21 (𝐴↑3) = (𝐴↑(2 + 1))
232 expp1 13061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐴 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
2334, 74, 232sylancl 697 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → (𝐴↑(2 + 1)) = ((𝐴↑2) · 𝐴))
234231, 233syl5eq 2806 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝐴↑3) = ((𝐴↑2) · 𝐴))
235234oveq2d 6829 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((3 / 8) · (𝐴↑3)) = ((3 / 8) · ((𝐴↑2) · 𝐴)))
23627a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 3 ∈ ℂ)
237236, 83, 88, 90div23d 11030 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ((3 · (𝐴↑3)) / 8) = ((3 / 8) · (𝐴↑3)))
23852a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (3 / 8) ∈ ℂ)
239238, 43, 4mulassd 10255 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (((3 / 8) · (𝐴↑2)) · 𝐴) = ((3 / 8) · ((𝐴↑2) · 𝐴)))
240235, 237, 2393eqtr4rd 2805 . . . . . . . . . . . . . . . . . 18 (𝜑 → (((3 / 8) · (𝐴↑2)) · 𝐴) = ((3 · (𝐴↑3)) / 8))
241236, 83, 88, 90divassd 11028 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((3 · (𝐴↑3)) / 8) = (3 · ((𝐴↑3) / 8)))
242240, 241eqtrd 2794 . . . . . . . . . . . . . . . . 17 (𝜑 → (((3 / 8) · (𝐴↑2)) · 𝐴) = (3 · ((𝐴↑3) / 8)))
243242oveq1d 6828 . . . . . . . . . . . . . . . 16 (𝜑 → ((((3 / 8) · (𝐴↑2)) · 𝐴) / 2) = ((3 · ((𝐴↑3) / 8)) / 2))
244126, 4, 89, 92divassd 11028 . . . . . . . . . . . . . . . 16 (𝜑 → ((((3 / 8) · (𝐴↑2)) · 𝐴) / 2) = (((3 / 8) · (𝐴↑2)) · (𝐴 / 2)))
245236, 128, 89, 92divassd 11028 . . . . . . . . . . . . . . . 16 (𝜑 → ((3 · ((𝐴↑3) / 8)) / 2) = (3 · (((𝐴↑3) / 8) / 2)))
246243, 244, 2453eqtr3d 2802 . . . . . . . . . . . . . . 15 (𝜑 → (((3 / 8) · (𝐴↑2)) · (𝐴 / 2)) = (3 · (((𝐴↑3) / 8) / 2)))
247230, 246oveq12d 6831 . . . . . . . . . . . . . 14 (𝜑 → ((𝐵 · (𝐴 / 2)) − (((3 / 8) · (𝐴↑2)) · (𝐴 / 2))) = (((𝐴 · 𝐵) / 2) − (3 · (((𝐴↑3) / 8) / 2))))
248225, 226, 2473eqtrd 2798 . . . . . . . . . . . . 13 (𝜑 → (𝑃 · (𝐴 / 2)) = (((𝐴 · 𝐵) / 2) − (3 · (((𝐴↑3) / 8) / 2))))
249248oveq2d 6829 . . . . . . . . . . . 12 (𝜑 → ((((𝐴↑3) / 8) / 2) + (𝑃 · (𝐴 / 2))) = ((((𝐴↑3) / 8) / 2) + (((𝐴 · 𝐵) / 2) − (3 · (((𝐴↑3) / 8) / 2)))))
250 mulcl 10212 . . . . . . . . . . . . . . 15 ((3 ∈ ℂ ∧ (((𝐴↑3) / 8) / 2) ∈ ℂ) → (3 · (((𝐴↑3) / 8) / 2)) ∈ ℂ)
25127, 129, 250sylancr 698 . . . . . . . . . . . . . 14 (𝜑 → (3 · (((𝐴↑3) / 8) / 2)) ∈ ℂ)
252129, 193, 251addsub12d 10607 . . . . . . . . . . . . 13 (𝜑 → ((((𝐴↑3) / 8) / 2) + (((𝐴 · 𝐵) / 2) − (3 · (((𝐴↑3) / 8) / 2)))) = (((𝐴 · 𝐵) / 2) + ((((𝐴↑3) / 8) / 2) − (3 · (((𝐴↑3) / 8) / 2)))))
253193, 251, 129subsub2d 10613 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 · 𝐵) / 2) − ((3 · (((𝐴↑3) / 8) / 2)) − (((𝐴↑3) / 8) / 2))) = (((𝐴 · 𝐵) / 2) + ((((𝐴↑3) / 8) / 2) − (3 · (((𝐴↑3) / 8) / 2)))))
254129mulid2d 10250 . . . . . . . . . . . . . . . 16 (𝜑 → (1 · (((𝐴↑3) / 8) / 2)) = (((𝐴↑3) / 8) / 2))
255254oveq2d 6829 . . . . . . . . . . . . . . 15 (𝜑 → ((3 · (((𝐴↑3) / 8) / 2)) − (1 · (((𝐴↑3) / 8) / 2))) = ((3 · (((𝐴↑3) / 8) / 2)) − (((𝐴↑3) / 8) / 2)))
256 3m1e2 11329 . . . . . . . . . . . . . . . . 17 (3 − 1) = 2
257256oveq1i 6823 . . . . . . . . . . . . . . . 16 ((3 − 1) · (((𝐴↑3) / 8) / 2)) = (2 · (((𝐴↑3) / 8) / 2))
258 1cnd 10248 . . . . . . . . . . . . . . . . 17 (𝜑 → 1 ∈ ℂ)
259236, 258, 129subdird 10679 . . . . . . . . . . . . . . . 16 (𝜑 → ((3 − 1) · (((𝐴↑3) / 8) / 2)) = ((3 · (((𝐴↑3) / 8) / 2)) − (1 · (((𝐴↑3) / 8) / 2))))
260128, 89, 92divcan2d 10995 . . . . . . . . . . . . . . . 16 (𝜑 → (2 · (((𝐴↑3) / 8) / 2)) = ((𝐴↑3) / 8))
261257, 259, 2603eqtr3a 2818 . . . . . . . . . . . . . . 15 (𝜑 → ((3 · (((𝐴↑3) / 8) / 2)) − (1 · (((𝐴↑3) / 8) / 2))) = ((𝐴↑3) / 8))
262255, 261eqtr3d 2796 . . . . . . . . . . . . . 14 (𝜑 → ((3 · (((𝐴↑3) / 8) / 2)) − (((𝐴↑3) / 8) / 2)) = ((𝐴↑3) / 8))
263262oveq2d 6829 . . . . . . . . . . . . 13 (𝜑 → (((𝐴 · 𝐵) / 2) − ((3 · (((𝐴↑3) / 8) / 2)) − (((𝐴↑3) / 8) / 2))) = (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)))
264252, 253, 2633eqtr2d 2800 . . . . . . . . . . . 12 (𝜑 → ((((𝐴↑3) / 8) / 2) + (((𝐴 · 𝐵) / 2) − (3 · (((𝐴↑3) / 8) / 2)))) = (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)))
265249, 264eqtrd 2794 . . . . . . . . . . 11 (𝜑 → ((((𝐴↑3) / 8) / 2) + (𝑃 · (𝐴 / 2))) = (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)))
266265oveq1d 6828 . . . . . . . . . 10 (𝜑 → (((((𝐴↑3) / 8) / 2) + (𝑃 · (𝐴 / 2))) · 𝑋) = ((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋))
267222, 224, 2663eqtr2d 2800 . . . . . . . . 9 (𝜑 → (((((𝐴↑3) / 8) / 2) · 𝑋) + (𝑃 · (2 · (𝑋 · (𝐴 / 4))))) = ((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋))
268267oveq1d 6828 . . . . . . . 8 (𝜑 → ((((((𝐴↑3) / 8) / 2) · 𝑋) + (𝑃 · (2 · (𝑋 · (𝐴 / 4))))) + (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))) = (((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
269203, 205, 2683eqtrd 2798 . . . . . . 7 (𝜑 → ((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) = (((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))))
2701oveq2d 6829 . . . . . . . . . 10 (𝜑 → (𝑄 · 𝑌) = (𝑄 · (𝑋 + (𝐴 / 4))))
271159, 3, 9adddid 10256 . . . . . . . . . 10 (𝜑 → (𝑄 · (𝑋 + (𝐴 / 4))) = ((𝑄 · 𝑋) + (𝑄 · (𝐴 / 4))))
272270, 271eqtrd 2794 . . . . . . . . 9 (𝜑 → (𝑄 · 𝑌) = ((𝑄 · 𝑋) + (𝑄 · (𝐴 / 4))))
273272oveq1d 6828 . . . . . . . 8 (𝜑 → ((𝑄 · 𝑌) + 𝑅) = (((𝑄 · 𝑋) + (𝑄 · (𝐴 / 4))) + 𝑅))
274198, 199, 161addassd 10254 . . . . . . . 8 (𝜑 → (((𝑄 · 𝑋) + (𝑄 · (𝐴 / 4))) + 𝑅) = ((𝑄 · 𝑋) + ((𝑄 · (𝐴 / 4)) + 𝑅)))
275273, 274eqtrd 2794 . . . . . . 7 (𝜑 → ((𝑄 · 𝑌) + 𝑅) = ((𝑄 · 𝑋) + ((𝑄 · (𝐴 / 4)) + 𝑅)))
276269, 275oveq12d 6831 . . . . . 6 (𝜑 → (((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) + ((𝑄 · 𝑌) + 𝑅)) = ((((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2)))) + ((𝑄 · 𝑋) + ((𝑄 · (𝐴 / 4)) + 𝑅))))
277194, 159addcomd 10430 . . . . . . . . . 10 (𝜑 → ((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) + 𝑄) = (𝑄 + (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8))))
278147oveq1d 6828 . . . . . . . . . 10 (𝜑 → (𝑄 + (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8))) = (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) + (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8))))
279144, 193subcld 10584 . . . . . . . . . . . 12 (𝜑 → (𝐶 − ((𝐴 · 𝐵) / 2)) ∈ ℂ)
280279, 128, 193ppncand 10624 . . . . . . . . . . 11 (𝜑 → (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) + (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8))) = ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴 · 𝐵) / 2)))
281144, 193npcand 10588 . . . . . . . . . . 11 (𝜑 → ((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴 · 𝐵) / 2)) = 𝐶)
282280, 281eqtrd 2794 . . . . . . . . . 10 (𝜑 → (((𝐶 − ((𝐴 · 𝐵) / 2)) + ((𝐴↑3) / 8)) + (((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8))) = 𝐶)
283277, 278, 2823eqtrd 2798 . . . . . . . . 9 (𝜑 → ((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) + 𝑄) = 𝐶)
284283oveq1d 6828 . . . . . . . 8 (𝜑 → (((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) + 𝑄) · 𝑋) = (𝐶 · 𝑋))
285194, 159, 3adddird 10257 . . . . . . . 8 (𝜑 → (((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) + 𝑄) · 𝑋) = (((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (𝑄 · 𝑋)))
286284, 285eqtr3d 2796 . . . . . . 7 (𝜑 → (𝐶 · 𝑋) = (((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (𝑄 · 𝑋)))
2874, 143, 144, 145, 146, 147, 148, 3, 1quart1lem 24781 . . . . . . 7 (𝜑𝐷 = ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅)))
288286, 287oveq12d 6831 . . . . . 6 (𝜑 → ((𝐶 · 𝑋) + 𝐷) = ((((((𝐴 · 𝐵) / 2) − ((𝐴↑3) / 8)) · 𝑋) + (𝑄 · 𝑋)) + ((((𝐴↑4) / 256) + (𝑃 · ((𝐴 / 4)↑2))) + ((𝑄 · (𝐴 / 4)) + 𝑅))))
289201, 276, 2883eqtr4d 2804 . . . . 5 (𝜑 → (((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) + ((𝑄 · 𝑌) + 𝑅)) = ((𝐶 · 𝑋) + 𝐷))
290289oveq2d 6829 . . . 4 (𝜑 → ((𝐵 · (𝑋↑2)) + (((((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256)) + (𝑃 · ((2 · (𝑋 · (𝐴 / 4))) + ((𝐴 / 4)↑2)))) + ((𝑄 · 𝑌) + 𝑅))) = ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷)))
291188, 191, 2903eqtrd 2798 . . 3 (𝜑 → ((((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅)) = ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷)))
292291oveq2d 6829 . 2 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((((((3 / 8) · (𝐴↑2)) · (𝑋↑2)) + (((((𝐴↑3) / 8) / 2) · 𝑋) + ((𝐴↑4) / 256))) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅))) = (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))))
293157, 163, 2923eqtrrd 2799 1 (𝜑 → (((𝑋↑4) + (𝐴 · (𝑋↑3))) + ((𝐵 · (𝑋↑2)) + ((𝐶 · 𝑋) + 𝐷))) = (((𝑌↑4) + (𝑃 · (𝑌↑2))) + ((𝑄 · 𝑌) + 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1632  wcel 2139  wne 2932  (class class class)co 6813  cc 10126  0cc0 10128  1c1 10129   + caddc 10131   · cmul 10133  cmin 10458   / cdiv 10876  2c2 11262  3c3 11263  4c4 11264  5c5 11265  6c6 11266  8c8 11268  0cn0 11484  cdc 11685  cexp 13054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-2nd 7334  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-div 10877  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-7 11276  df-8 11277  df-9 11278  df-n0 11485  df-z 11570  df-dec 11686  df-uz 11880  df-seq 12996  df-exp 13055
This theorem is referenced by:  quart  24787
  Copyright terms: Public domain W3C validator