MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem1 Structured version   Visualization version   GIF version

Theorem quartlem1 24479
Description: Lemma for quart 24483. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quartlem1.p (𝜑𝑃 ∈ ℂ)
quartlem1.q (𝜑𝑄 ∈ ℂ)
quartlem1.r (𝜑𝑅 ∈ ℂ)
quartlem1.u (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
quartlem1.v (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
Assertion
Ref Expression
quartlem1 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))

Proof of Theorem quartlem1
StepHypRef Expression
1 2cn 11036 . . . . . . . . . 10 2 ∈ ℂ
2 quartlem1.p . . . . . . . . . 10 (𝜑𝑃 ∈ ℂ)
3 sqmul 12863 . . . . . . . . . 10 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → ((2 · 𝑃)↑2) = ((2↑2) · (𝑃↑2)))
41, 2, 3sylancr 694 . . . . . . . . 9 (𝜑 → ((2 · 𝑃)↑2) = ((2↑2) · (𝑃↑2)))
5 sq2 12897 . . . . . . . . . 10 (2↑2) = 4
65oveq1i 6615 . . . . . . . . 9 ((2↑2) · (𝑃↑2)) = (4 · (𝑃↑2))
74, 6syl6eq 2676 . . . . . . . 8 (𝜑 → ((2 · 𝑃)↑2) = (4 · (𝑃↑2)))
87oveq1d 6620 . . . . . . 7 (𝜑 → (((2 · 𝑃)↑2) − (3 · (𝑃↑2))) = ((4 · (𝑃↑2)) − (3 · (𝑃↑2))))
9 4cn 11043 . . . . . . . . 9 4 ∈ ℂ
109a1i 11 . . . . . . . 8 (𝜑 → 4 ∈ ℂ)
11 3cn 11040 . . . . . . . . 9 3 ∈ ℂ
1211a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℂ)
132sqcld 12943 . . . . . . . 8 (𝜑 → (𝑃↑2) ∈ ℂ)
1410, 12, 13subdird 10432 . . . . . . 7 (𝜑 → ((4 − 3) · (𝑃↑2)) = ((4 · (𝑃↑2)) − (3 · (𝑃↑2))))
158, 14eqtr4d 2663 . . . . . 6 (𝜑 → (((2 · 𝑃)↑2) − (3 · (𝑃↑2))) = ((4 − 3) · (𝑃↑2)))
16 ax-1cn 9939 . . . . . . . . . 10 1 ∈ ℂ
17 3p1e4 11098 . . . . . . . . . 10 (3 + 1) = 4
189, 11, 16, 17subaddrii 10315 . . . . . . . . 9 (4 − 3) = 1
1918oveq1i 6615 . . . . . . . 8 ((4 − 3) · (𝑃↑2)) = (1 · (𝑃↑2))
20 mulid2 9983 . . . . . . . 8 ((𝑃↑2) ∈ ℂ → (1 · (𝑃↑2)) = (𝑃↑2))
2119, 20syl5eq 2672 . . . . . . 7 ((𝑃↑2) ∈ ℂ → ((4 − 3) · (𝑃↑2)) = (𝑃↑2))
2213, 21syl 17 . . . . . 6 (𝜑 → ((4 − 3) · (𝑃↑2)) = (𝑃↑2))
2315, 22eqtr2d 2661 . . . . 5 (𝜑 → (𝑃↑2) = (((2 · 𝑃)↑2) − (3 · (𝑃↑2))))
2423oveq1d 6620 . . . 4 (𝜑 → ((𝑃↑2) + (12 · 𝑅)) = ((((2 · 𝑃)↑2) − (3 · (𝑃↑2))) + (12 · 𝑅)))
25 mulcl 9965 . . . . . . 7 ((2 ∈ ℂ ∧ 𝑃 ∈ ℂ) → (2 · 𝑃) ∈ ℂ)
261, 2, 25sylancr 694 . . . . . 6 (𝜑 → (2 · 𝑃) ∈ ℂ)
2726sqcld 12943 . . . . 5 (𝜑 → ((2 · 𝑃)↑2) ∈ ℂ)
28 mulcl 9965 . . . . . 6 ((3 ∈ ℂ ∧ (𝑃↑2) ∈ ℂ) → (3 · (𝑃↑2)) ∈ ℂ)
2911, 13, 28sylancr 694 . . . . 5 (𝜑 → (3 · (𝑃↑2)) ∈ ℂ)
30 1nn0 11253 . . . . . . . 8 1 ∈ ℕ0
31 2nn 11130 . . . . . . . 8 2 ∈ ℕ
3230, 31decnncl 11462 . . . . . . 7 12 ∈ ℕ
3332nncni 10975 . . . . . 6 12 ∈ ℂ
34 quartlem1.r . . . . . 6 (𝜑𝑅 ∈ ℂ)
35 mulcl 9965 . . . . . 6 ((12 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (12 · 𝑅) ∈ ℂ)
3633, 34, 35sylancr 694 . . . . 5 (𝜑 → (12 · 𝑅) ∈ ℂ)
3727, 29, 36subsubd 10365 . . . 4 (𝜑 → (((2 · 𝑃)↑2) − ((3 · (𝑃↑2)) − (12 · 𝑅))) = ((((2 · 𝑃)↑2) − (3 · (𝑃↑2))) + (12 · 𝑅)))
3824, 37eqtr4d 2663 . . 3 (𝜑 → ((𝑃↑2) + (12 · 𝑅)) = (((2 · 𝑃)↑2) − ((3 · (𝑃↑2)) − (12 · 𝑅))))
39 quartlem1.u . . 3 (𝜑𝑈 = ((𝑃↑2) + (12 · 𝑅)))
40 mulcl 9965 . . . . . . 7 ((4 ∈ ℂ ∧ 𝑅 ∈ ℂ) → (4 · 𝑅) ∈ ℂ)
419, 34, 40sylancr 694 . . . . . 6 (𝜑 → (4 · 𝑅) ∈ ℂ)
4212, 13, 41subdid 10431 . . . . 5 (𝜑 → (3 · ((𝑃↑2) − (4 · 𝑅))) = ((3 · (𝑃↑2)) − (3 · (4 · 𝑅))))
43 4t3e12 11576 . . . . . . . . 9 (4 · 3) = 12
449, 11, 43mulcomli 9992 . . . . . . . 8 (3 · 4) = 12
4544oveq1i 6615 . . . . . . 7 ((3 · 4) · 𝑅) = (12 · 𝑅)
4612, 10, 34mulassd 10008 . . . . . . 7 (𝜑 → ((3 · 4) · 𝑅) = (3 · (4 · 𝑅)))
4745, 46syl5eqr 2674 . . . . . 6 (𝜑 → (12 · 𝑅) = (3 · (4 · 𝑅)))
4847oveq2d 6621 . . . . 5 (𝜑 → ((3 · (𝑃↑2)) − (12 · 𝑅)) = ((3 · (𝑃↑2)) − (3 · (4 · 𝑅))))
4942, 48eqtr4d 2663 . . . 4 (𝜑 → (3 · ((𝑃↑2) − (4 · 𝑅))) = ((3 · (𝑃↑2)) − (12 · 𝑅)))
5049oveq2d 6621 . . 3 (𝜑 → (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) = (((2 · 𝑃)↑2) − ((3 · (𝑃↑2)) − (12 · 𝑅))))
5138, 39, 503eqtr4d 2670 . 2 (𝜑𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))))
521a1i 11 . . . . . . . . . 10 (𝜑 → 2 ∈ ℂ)
53 3nn0 11255 . . . . . . . . . . 11 3 ∈ ℕ0
5453a1i 11 . . . . . . . . . 10 (𝜑 → 3 ∈ ℕ0)
5552, 2, 54mulexpd 12960 . . . . . . . . 9 (𝜑 → ((2 · 𝑃)↑3) = ((2↑3) · (𝑃↑3)))
56 cu2 12900 . . . . . . . . . 10 (2↑3) = 8
5756oveq1i 6615 . . . . . . . . 9 ((2↑3) · (𝑃↑3)) = (8 · (𝑃↑3))
5855, 57syl6eq 2676 . . . . . . . 8 (𝜑 → ((2 · 𝑃)↑3) = (8 · (𝑃↑3)))
5958oveq2d 6621 . . . . . . 7 (𝜑 → (2 · ((2 · 𝑃)↑3)) = (2 · (8 · (𝑃↑3))))
60 8cn 11051 . . . . . . . . 9 8 ∈ ℂ
6160a1i 11 . . . . . . . 8 (𝜑 → 8 ∈ ℂ)
62 expcl 12815 . . . . . . . . 9 ((𝑃 ∈ ℂ ∧ 3 ∈ ℕ0) → (𝑃↑3) ∈ ℂ)
632, 53, 62sylancl 693 . . . . . . . 8 (𝜑 → (𝑃↑3) ∈ ℂ)
6452, 61, 63mul12d 10190 . . . . . . 7 (𝜑 → (2 · (8 · (𝑃↑3))) = (8 · (2 · (𝑃↑3))))
6559, 64eqtrd 2660 . . . . . 6 (𝜑 → (2 · ((2 · 𝑃)↑3)) = (8 · (2 · (𝑃↑3))))
66 9cn 11053 . . . . . . . . 9 9 ∈ ℂ
6766a1i 11 . . . . . . . 8 (𝜑 → 9 ∈ ℂ)
68 mulcl 9965 . . . . . . . . 9 ((2 ∈ ℂ ∧ (𝑃↑3) ∈ ℂ) → (2 · (𝑃↑3)) ∈ ℂ)
691, 63, 68sylancr 694 . . . . . . . 8 (𝜑 → (2 · (𝑃↑3)) ∈ ℂ)
702, 34mulcld 10005 . . . . . . . . 9 (𝜑 → (𝑃 · 𝑅) ∈ ℂ)
71 mulcl 9965 . . . . . . . . 9 ((8 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (8 · (𝑃 · 𝑅)) ∈ ℂ)
7260, 70, 71sylancr 694 . . . . . . . 8 (𝜑 → (8 · (𝑃 · 𝑅)) ∈ ℂ)
7367, 69, 72subdid 10431 . . . . . . 7 (𝜑 → (9 · ((2 · (𝑃↑3)) − (8 · (𝑃 · 𝑅)))) = ((9 · (2 · (𝑃↑3))) − (9 · (8 · (𝑃 · 𝑅)))))
7426, 13, 41subdid 10431 . . . . . . . . 9 (𝜑 → ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))) = (((2 · 𝑃) · (𝑃↑2)) − ((2 · 𝑃) · (4 · 𝑅))))
7552, 2, 13mulassd 10008 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑃) · (𝑃↑2)) = (2 · (𝑃 · (𝑃↑2))))
762, 13mulcomd 10006 . . . . . . . . . . . . 13 (𝜑 → (𝑃 · (𝑃↑2)) = ((𝑃↑2) · 𝑃))
77 df-3 11025 . . . . . . . . . . . . . . 15 3 = (2 + 1)
7877oveq2i 6616 . . . . . . . . . . . . . 14 (𝑃↑3) = (𝑃↑(2 + 1))
79 2nn0 11254 . . . . . . . . . . . . . . 15 2 ∈ ℕ0
80 expp1 12804 . . . . . . . . . . . . . . 15 ((𝑃 ∈ ℂ ∧ 2 ∈ ℕ0) → (𝑃↑(2 + 1)) = ((𝑃↑2) · 𝑃))
812, 79, 80sylancl 693 . . . . . . . . . . . . . 14 (𝜑 → (𝑃↑(2 + 1)) = ((𝑃↑2) · 𝑃))
8278, 81syl5eq 2672 . . . . . . . . . . . . 13 (𝜑 → (𝑃↑3) = ((𝑃↑2) · 𝑃))
8376, 82eqtr4d 2663 . . . . . . . . . . . 12 (𝜑 → (𝑃 · (𝑃↑2)) = (𝑃↑3))
8483oveq2d 6621 . . . . . . . . . . 11 (𝜑 → (2 · (𝑃 · (𝑃↑2))) = (2 · (𝑃↑3)))
8575, 84eqtrd 2660 . . . . . . . . . 10 (𝜑 → ((2 · 𝑃) · (𝑃↑2)) = (2 · (𝑃↑3)))
8652, 2, 10, 34mul4d 10193 . . . . . . . . . . 11 (𝜑 → ((2 · 𝑃) · (4 · 𝑅)) = ((2 · 4) · (𝑃 · 𝑅)))
87 4t2e8 11126 . . . . . . . . . . . . 13 (4 · 2) = 8
889, 1, 87mulcomli 9992 . . . . . . . . . . . 12 (2 · 4) = 8
8988oveq1i 6615 . . . . . . . . . . 11 ((2 · 4) · (𝑃 · 𝑅)) = (8 · (𝑃 · 𝑅))
9086, 89syl6eq 2676 . . . . . . . . . 10 (𝜑 → ((2 · 𝑃) · (4 · 𝑅)) = (8 · (𝑃 · 𝑅)))
9185, 90oveq12d 6623 . . . . . . . . 9 (𝜑 → (((2 · 𝑃) · (𝑃↑2)) − ((2 · 𝑃) · (4 · 𝑅))) = ((2 · (𝑃↑3)) − (8 · (𝑃 · 𝑅))))
9274, 91eqtrd 2660 . . . . . . . 8 (𝜑 → ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))) = ((2 · (𝑃↑3)) − (8 · (𝑃 · 𝑅))))
9392oveq2d 6621 . . . . . . 7 (𝜑 → (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅)))) = (9 · ((2 · (𝑃↑3)) − (8 · (𝑃 · 𝑅)))))
94 9t8e72 11613 . . . . . . . . . 10 (9 · 8) = 72
9594oveq1i 6615 . . . . . . . . 9 ((9 · 8) · (𝑃 · 𝑅)) = (72 · (𝑃 · 𝑅))
9667, 61, 70mulassd 10008 . . . . . . . . 9 (𝜑 → ((9 · 8) · (𝑃 · 𝑅)) = (9 · (8 · (𝑃 · 𝑅))))
9795, 96syl5eqr 2674 . . . . . . . 8 (𝜑 → (72 · (𝑃 · 𝑅)) = (9 · (8 · (𝑃 · 𝑅))))
9897oveq2d 6621 . . . . . . 7 (𝜑 → ((9 · (2 · (𝑃↑3))) − (72 · (𝑃 · 𝑅))) = ((9 · (2 · (𝑃↑3))) − (9 · (8 · (𝑃 · 𝑅)))))
9973, 93, 983eqtr4d 2670 . . . . . 6 (𝜑 → (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅)))) = ((9 · (2 · (𝑃↑3))) − (72 · (𝑃 · 𝑅))))
10065, 99oveq12d 6623 . . . . 5 (𝜑 → ((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) = ((8 · (2 · (𝑃↑3))) − ((9 · (2 · (𝑃↑3))) − (72 · (𝑃 · 𝑅)))))
101 mulcl 9965 . . . . . . 7 ((8 ∈ ℂ ∧ (2 · (𝑃↑3)) ∈ ℂ) → (8 · (2 · (𝑃↑3))) ∈ ℂ)
10260, 69, 101sylancr 694 . . . . . 6 (𝜑 → (8 · (2 · (𝑃↑3))) ∈ ℂ)
103 mulcl 9965 . . . . . . 7 ((9 ∈ ℂ ∧ (2 · (𝑃↑3)) ∈ ℂ) → (9 · (2 · (𝑃↑3))) ∈ ℂ)
10466, 69, 103sylancr 694 . . . . . 6 (𝜑 → (9 · (2 · (𝑃↑3))) ∈ ℂ)
105 7nn0 11259 . . . . . . . . 9 7 ∈ ℕ0
106105, 31decnncl 11462 . . . . . . . 8 72 ∈ ℕ
107106nncni 10975 . . . . . . 7 72 ∈ ℂ
108 mulcl 9965 . . . . . . 7 ((72 ∈ ℂ ∧ (𝑃 · 𝑅) ∈ ℂ) → (72 · (𝑃 · 𝑅)) ∈ ℂ)
109107, 70, 108sylancr 694 . . . . . 6 (𝜑 → (72 · (𝑃 · 𝑅)) ∈ ℂ)
110102, 104, 109subsubd 10365 . . . . 5 (𝜑 → ((8 · (2 · (𝑃↑3))) − ((9 · (2 · (𝑃↑3))) − (72 · (𝑃 · 𝑅)))) = (((8 · (2 · (𝑃↑3))) − (9 · (2 · (𝑃↑3)))) + (72 · (𝑃 · 𝑅))))
111104, 102negsubdi2d 10353 . . . . . . 7 (𝜑 → -((9 · (2 · (𝑃↑3))) − (8 · (2 · (𝑃↑3)))) = ((8 · (2 · (𝑃↑3))) − (9 · (2 · (𝑃↑3)))))
11267, 61, 69subdird 10432 . . . . . . . . 9 (𝜑 → ((9 − 8) · (2 · (𝑃↑3))) = ((9 · (2 · (𝑃↑3))) − (8 · (2 · (𝑃↑3)))))
113 8p1e9 11103 . . . . . . . . . . . 12 (8 + 1) = 9
11466, 60, 16, 113subaddrii 10315 . . . . . . . . . . 11 (9 − 8) = 1
115114oveq1i 6615 . . . . . . . . . 10 ((9 − 8) · (2 · (𝑃↑3))) = (1 · (2 · (𝑃↑3)))
11669mulid2d 10003 . . . . . . . . . 10 (𝜑 → (1 · (2 · (𝑃↑3))) = (2 · (𝑃↑3)))
117115, 116syl5eq 2672 . . . . . . . . 9 (𝜑 → ((9 − 8) · (2 · (𝑃↑3))) = (2 · (𝑃↑3)))
118112, 117eqtr3d 2662 . . . . . . . 8 (𝜑 → ((9 · (2 · (𝑃↑3))) − (8 · (2 · (𝑃↑3)))) = (2 · (𝑃↑3)))
119118negeqd 10220 . . . . . . 7 (𝜑 → -((9 · (2 · (𝑃↑3))) − (8 · (2 · (𝑃↑3)))) = -(2 · (𝑃↑3)))
120111, 119eqtr3d 2662 . . . . . 6 (𝜑 → ((8 · (2 · (𝑃↑3))) − (9 · (2 · (𝑃↑3)))) = -(2 · (𝑃↑3)))
121120oveq1d 6620 . . . . 5 (𝜑 → (((8 · (2 · (𝑃↑3))) − (9 · (2 · (𝑃↑3)))) + (72 · (𝑃 · 𝑅))) = (-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))))
122100, 110, 1213eqtrd 2664 . . . 4 (𝜑 → ((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) = (-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))))
123 7nn 11135 . . . . . . 7 7 ∈ ℕ
12479, 123decnncl 11462 . . . . . 6 27 ∈ ℕ
125124nncni 10975 . . . . 5 27 ∈ ℂ
126 quartlem1.q . . . . . 6 (𝜑𝑄 ∈ ℂ)
127126sqcld 12943 . . . . 5 (𝜑 → (𝑄↑2) ∈ ℂ)
128 mulneg2 10412 . . . . 5 ((27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (27 · -(𝑄↑2)) = -(27 · (𝑄↑2)))
129125, 127, 128sylancr 694 . . . 4 (𝜑 → (27 · -(𝑄↑2)) = -(27 · (𝑄↑2)))
130122, 129oveq12d 6623 . . 3 (𝜑 → (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))) = ((-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))) + -(27 · (𝑄↑2))))
13169negcld 10324 . . . . 5 (𝜑 → -(2 · (𝑃↑3)) ∈ ℂ)
132 mulcl 9965 . . . . . 6 ((27 ∈ ℂ ∧ (𝑄↑2) ∈ ℂ) → (27 · (𝑄↑2)) ∈ ℂ)
133125, 127, 132sylancr 694 . . . . 5 (𝜑 → (27 · (𝑄↑2)) ∈ ℂ)
134131, 109, 133addsubd 10358 . . . 4 (𝜑 → ((-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))) − (27 · (𝑄↑2))) = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
135131, 109addcld 10004 . . . . 5 (𝜑 → (-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))) ∈ ℂ)
136135, 133negsubd 10343 . . . 4 (𝜑 → ((-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))) + -(27 · (𝑄↑2))) = ((-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))) − (27 · (𝑄↑2))))
137 quartlem1.v . . . 4 (𝜑𝑉 = ((-(2 · (𝑃↑3)) − (27 · (𝑄↑2))) + (72 · (𝑃 · 𝑅))))
138134, 136, 1373eqtr4d 2670 . . 3 (𝜑 → ((-(2 · (𝑃↑3)) + (72 · (𝑃 · 𝑅))) + -(27 · (𝑄↑2))) = 𝑉)
139130, 138eqtr2d 2661 . 2 (𝜑𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2))))
14051, 139jca 554 1 (𝜑 → (𝑈 = (((2 · 𝑃)↑2) − (3 · ((𝑃↑2) − (4 · 𝑅)))) ∧ 𝑉 = (((2 · ((2 · 𝑃)↑3)) − (9 · ((2 · 𝑃) · ((𝑃↑2) − (4 · 𝑅))))) + (27 · -(𝑄↑2)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  (class class class)co 6605  cc 9879  1c1 9882   + caddc 9884   · cmul 9886  cmin 10211  -cneg 10212  2c2 11015  3c3 11016  4c4 11017  7c7 11020  8c8 11021  9c9 11022  0cn0 11237  cdc 11437  cexp 12797
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-2 11024  df-3 11025  df-4 11026  df-5 11027  df-6 11028  df-7 11029  df-8 11030  df-9 11031  df-n0 11238  df-z 11323  df-dec 11438  df-uz 11632  df-seq 12739  df-exp 12798
This theorem is referenced by:  quart  24483
  Copyright terms: Public domain W3C validator