MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quoremz Structured version   Visualization version   GIF version

Theorem quoremz 12591
Description: Quotient and remainder of an integer divided by a positive integer. TODO - is this really needed for anything? Should we use mod to simplify it? Remark (AV): This is a special case of divalg 15045. (Contributed by NM, 14-Aug-2008.)
Hypotheses
Ref Expression
quorem.1 𝑄 = (⌊‘(𝐴 / 𝐵))
quorem.2 𝑅 = (𝐴 − (𝐵 · 𝑄))
Assertion
Ref Expression
quoremz ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))

Proof of Theorem quoremz
StepHypRef Expression
1 quorem.1 . . 3 𝑄 = (⌊‘(𝐴 / 𝐵))
2 zre 11326 . . . . . 6 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
32adantr 481 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℝ)
4 nnre 10972 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ∈ ℝ)
54adantl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℝ)
6 nnne0 10998 . . . . . 6 (𝐵 ∈ ℕ → 𝐵 ≠ 0)
76adantl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ≠ 0)
83, 5, 7redivcld 10798 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 / 𝐵) ∈ ℝ)
98flcld 12536 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ∈ ℤ)
101, 9syl5eqel 2708 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℤ)
11 quorem.2 . . 3 𝑅 = (𝐴 − (𝐵 · 𝑄))
1210zcnd 11427 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ∈ ℂ)
13 nncn 10973 . . . . . . . 8 (𝐵 ∈ ℕ → 𝐵 ∈ ℂ)
1413adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℂ)
1512, 14, 7divcan3d 10751 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) = 𝑄)
16 flle 12537 . . . . . . . 8 ((𝐴 / 𝐵) ∈ ℝ → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
178, 16syl 17 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (⌊‘(𝐴 / 𝐵)) ≤ (𝐴 / 𝐵))
181, 17syl5eqbr 4653 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑄 ≤ (𝐴 / 𝐵))
1915, 18eqbrtrd 4640 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵))
20 nnz 11344 . . . . . . . . 9 (𝐵 ∈ ℕ → 𝐵 ∈ ℤ)
2120adantl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐵 ∈ ℤ)
2221, 10zmulcld 11432 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℤ)
2322zred 11426 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℝ)
24 nngt0 10994 . . . . . . 7 (𝐵 ∈ ℕ → 0 < 𝐵)
2524adantl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 0 < 𝐵)
26 lediv1 10833 . . . . . 6 (((𝐵 · 𝑄) ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2723, 3, 5, 25, 26syl112anc 1327 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ ((𝐵 · 𝑄) / 𝐵) ≤ (𝐴 / 𝐵)))
2819, 27mpbird 247 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ≤ 𝐴)
29 simpl 473 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℤ)
30 znn0sub 11369 . . . . 5 (((𝐵 · 𝑄) ∈ ℤ ∧ 𝐴 ∈ ℤ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0))
3122, 29, 30syl2anc 692 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) ≤ 𝐴 ↔ (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0))
3228, 31mpbid 222 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐴 − (𝐵 · 𝑄)) ∈ ℕ0)
3311, 32syl5eqel 2708 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈ ℕ0)
341oveq2i 6616 . . . . . 6 ((𝐴 / 𝐵) − 𝑄) = ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵)))
35 fraclt1 12540 . . . . . . 7 ((𝐴 / 𝐵) ∈ ℝ → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
368, 35syl 17 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − (⌊‘(𝐴 / 𝐵))) < 1)
3734, 36syl5eqbr 4653 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − 𝑄) < 1)
3811oveq1i 6615 . . . . . 6 (𝑅 / 𝐵) = ((𝐴 − (𝐵 · 𝑄)) / 𝐵)
39 zcn 11327 . . . . . . . . 9 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
4039adantr 481 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 ∈ ℂ)
4122zcnd 11427 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 · 𝑄) ∈ ℂ)
4213, 6jca 554 . . . . . . . . 9 (𝐵 ∈ ℕ → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
4342adantl 482 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
44 divsubdir 10666 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ (𝐵 · 𝑄) ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4540, 41, 43, 44syl3anc 1323 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)))
4615oveq2d 6621 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 / 𝐵) − ((𝐵 · 𝑄) / 𝐵)) = ((𝐴 / 𝐵) − 𝑄))
4745, 46eqtrd 2660 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐴 − (𝐵 · 𝑄)) / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4838, 47syl5eq 2672 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) = ((𝐴 / 𝐵) − 𝑄))
4913, 6dividd 10744 . . . . . 6 (𝐵 ∈ ℕ → (𝐵 / 𝐵) = 1)
5049adantl 482 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝐵 / 𝐵) = 1)
5137, 48, 503brtr4d 4650 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 / 𝐵) < (𝐵 / 𝐵))
5233nn0red 11297 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 ∈ ℝ)
53 ltdiv1 10832 . . . . 5 ((𝑅 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5452, 5, 5, 25, 53syl112anc 1327 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵 ↔ (𝑅 / 𝐵) < (𝐵 / 𝐵)))
5551, 54mpbird 247 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝑅 < 𝐵)
5611oveq2i 6616 . . . 4 ((𝐵 · 𝑄) + 𝑅) = ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄)))
5741, 40pncan3d 10340 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝐵 · 𝑄) + (𝐴 − (𝐵 · 𝑄))) = 𝐴)
5856, 57syl5req 2673 . . 3 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → 𝐴 = ((𝐵 · 𝑄) + 𝑅))
5955, 58jca 554 . 2 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅)))
6010, 33, 59jca31 556 1 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℕ) → ((𝑄 ∈ ℤ ∧ 𝑅 ∈ ℕ0) ∧ (𝑅 < 𝐵𝐴 = ((𝐵 · 𝑄) + 𝑅))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  cr 9880  0cc0 9881  1c1 9882   + caddc 9884   · cmul 9886   < clt 10019  cle 10020  cmin 10211   / cdiv 10629  cn 10965  0cn0 11237  cz 11322  cfl 12528
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fl 12530
This theorem is referenced by:  quoremnn0  12592
  Copyright terms: Public domain W3C validator