MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotlem Structured version   Visualization version   GIF version

Theorem quotlem 24100
Description: Lemma for properties of the polynomial quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypotheses
Ref Expression
plydiv.pl ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
plydiv.tm ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
plydiv.rc ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
plydiv.m1 (𝜑 → -1 ∈ 𝑆)
plydiv.f (𝜑𝐹 ∈ (Poly‘𝑆))
plydiv.g (𝜑𝐺 ∈ (Poly‘𝑆))
plydiv.z (𝜑𝐺 ≠ 0𝑝)
quotlem.8 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
Assertion
Ref Expression
quotlem (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝑥,𝑦,𝐹   𝜑,𝑥,𝑦   𝑥,𝐺,𝑦   𝑥,𝑅,𝑦   𝑥,𝑆,𝑦

Proof of Theorem quotlem
Dummy variable 𝑞 is distinct from all other variables.
StepHypRef Expression
1 plydiv.f . . . . 5 (𝜑𝐹 ∈ (Poly‘𝑆))
2 plydiv.g . . . . 5 (𝜑𝐺 ∈ (Poly‘𝑆))
3 plydiv.z . . . . 5 (𝜑𝐺 ≠ 0𝑝)
4 eqid 2651 . . . . . 6 (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
54quotval 24092 . . . . 5 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
61, 2, 3, 5syl3anc 1366 . . . 4 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
7 plydiv.pl . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 + 𝑦) ∈ 𝑆)
8 plydiv.tm . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑦𝑆)) → (𝑥 · 𝑦) ∈ 𝑆)
9 plydiv.rc . . . . . . 7 ((𝜑 ∧ (𝑥𝑆𝑥 ≠ 0)) → (1 / 𝑥) ∈ 𝑆)
10 plydiv.m1 . . . . . . 7 (𝜑 → -1 ∈ 𝑆)
117, 8, 9, 10, 1, 2, 3, 4plydivalg 24099 . . . . . 6 (𝜑 → ∃!𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
12 reurex 3190 . . . . . 6 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
1311, 12syl 17 . . . . 5 (𝜑 → ∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
14 addcl 10056 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 + 𝑦) ∈ ℂ)
1514adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 + 𝑦) ∈ ℂ)
16 mulcl 10058 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ) → (𝑥 · 𝑦) ∈ ℂ)
1716adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ)) → (𝑥 · 𝑦) ∈ ℂ)
18 reccl 10730 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℂ)
1918adantl 481 . . . . . 6 ((𝜑 ∧ (𝑥 ∈ ℂ ∧ 𝑥 ≠ 0)) → (1 / 𝑥) ∈ ℂ)
20 neg1cn 11162 . . . . . . 7 -1 ∈ ℂ
2120a1i 11 . . . . . 6 (𝜑 → -1 ∈ ℂ)
22 plyssc 24001 . . . . . . 7 (Poly‘𝑆) ⊆ (Poly‘ℂ)
2322, 1sseldi 3634 . . . . . 6 (𝜑𝐹 ∈ (Poly‘ℂ))
2422, 2sseldi 3634 . . . . . 6 (𝜑𝐺 ∈ (Poly‘ℂ))
2515, 17, 19, 21, 23, 24, 3, 4plydivalg 24099 . . . . 5 (𝜑 → ∃!𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
26 id 22 . . . . . . 7 (((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
2726rgenw 2953 . . . . . 6 𝑞 ∈ (Poly‘𝑆)(((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))
28 riotass2 6678 . . . . . 6 ((((Poly‘𝑆) ⊆ (Poly‘ℂ) ∧ ∀𝑞 ∈ (Poly‘𝑆)(((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) ∧ (∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)))) → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
2922, 27, 28mpanl12 718 . . . . 5 ((∃𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ∧ ∃!𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
3013, 25, 29syl2anc 694 . . . 4 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) = (𝑞 ∈ (Poly‘ℂ)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
316, 30eqtr4d 2688 . . 3 (𝜑 → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))))
32 riotacl2 6664 . . . 4 (∃!𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))})
3311, 32syl 17 . . 3 (𝜑 → (𝑞 ∈ (Poly‘𝑆)((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))})
3431, 33eqeltrd 2730 . 2 (𝜑 → (𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))})
35 oveq2 6698 . . . . . . 7 (𝑞 = (𝐹 quot 𝐺) → (𝐺𝑓 · 𝑞) = (𝐺𝑓 · (𝐹 quot 𝐺)))
3635oveq2d 6706 . . . . . 6 (𝑞 = (𝐹 quot 𝐺) → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺))))
37 quotlem.8 . . . . . 6 𝑅 = (𝐹𝑓 − (𝐺𝑓 · (𝐹 quot 𝐺)))
3836, 37syl6eqr 2703 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 𝑅)
3938eqeq1d 2653 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝𝑅 = 0𝑝))
4038fveq2d 6233 . . . . 5 (𝑞 = (𝐹 quot 𝐺) → (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) = (deg‘𝑅))
4140breq1d 4695 . . . 4 (𝑞 = (𝐹 quot 𝐺) → ((deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺) ↔ (deg‘𝑅) < (deg‘𝐺)))
4239, 41orbi12d 746 . . 3 (𝑞 = (𝐹 quot 𝐺) → (((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4342elrab 3396 . 2 ((𝐹 quot 𝐺) ∈ {𝑞 ∈ (Poly‘𝑆) ∣ ((𝐹𝑓 − (𝐺𝑓 · 𝑞)) = 0𝑝 ∨ (deg‘(𝐹𝑓 − (𝐺𝑓 · 𝑞))) < (deg‘𝐺))} ↔ ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
4434, 43sylib 208 1 (𝜑 → ((𝐹 quot 𝐺) ∈ (Poly‘𝑆) ∧ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383   = wceq 1523  wcel 2030  wne 2823  wral 2941  wrex 2942  ∃!wreu 2943  {crab 2945  wss 3607   class class class wbr 4685  cfv 5926  crio 6650  (class class class)co 6690  𝑓 cof 6937  cc 9972  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   < clt 10112  cmin 10304  -cneg 10305   / cdiv 10722  0𝑝c0p 23481  Polycply 23985  degcdgr 23988   quot cquot 24090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-addf 10053
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fz 12365  df-fzo 12505  df-fl 12633  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-rlim 14264  df-sum 14461  df-0p 23482  df-ply 23989  df-coe 23991  df-dgr 23992  df-quot 24091
This theorem is referenced by:  quotcl  24101  quotdgr  24103
  Copyright terms: Public domain W3C validator