MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotval Structured version   Visualization version   GIF version

Theorem quotval 24266
Description: Value of the quotient function. (Contributed by Mario Carneiro, 23-Jul-2014.)
Hypothesis
Ref Expression
quotval.1 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
Assertion
Ref Expression
quotval ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Distinct variable groups:   𝐹,𝑞   𝐺,𝑞
Allowed substitution hints:   𝑅(𝑞)   𝑆(𝑞)

Proof of Theorem quotval
Dummy variables 𝑓 𝑔 𝑟 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 plyssc 24175 . . 3 (Poly‘𝑆) ⊆ (Poly‘ℂ)
21sseli 3740 . 2 (𝐹 ∈ (Poly‘𝑆) → 𝐹 ∈ (Poly‘ℂ))
31sseli 3740 . . 3 (𝐺 ∈ (Poly‘𝑆) → 𝐺 ∈ (Poly‘ℂ))
4 eldifsn 4462 . . . . 5 (𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↔ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝))
5 oveq1 6821 . . . . . . . . . . 11 (𝑔 = 𝐺 → (𝑔𝑓 · 𝑞) = (𝐺𝑓 · 𝑞))
6 oveq12 6823 . . . . . . . . . . 11 ((𝑓 = 𝐹 ∧ (𝑔𝑓 · 𝑞) = (𝐺𝑓 · 𝑞)) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
75, 6sylan2 492 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = (𝐹𝑓 − (𝐺𝑓 · 𝑞)))
8 quotval.1 . . . . . . . . . 10 𝑅 = (𝐹𝑓 − (𝐺𝑓 · 𝑞))
97, 8syl6eqr 2812 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑓𝑓 − (𝑔𝑓 · 𝑞)) = 𝑅)
109sbceq1d 3581 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ [𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
11 ovex 6842 . . . . . . . . . . 11 (𝐹𝑓 − (𝐺𝑓 · 𝑞)) ∈ V
128, 11eqeltri 2835 . . . . . . . . . 10 𝑅 ∈ V
13 eqeq1 2764 . . . . . . . . . . 11 (𝑟 = 𝑅 → (𝑟 = 0𝑝𝑅 = 0𝑝))
14 fveq2 6353 . . . . . . . . . . . 12 (𝑟 = 𝑅 → (deg‘𝑟) = (deg‘𝑅))
1514breq1d 4814 . . . . . . . . . . 11 (𝑟 = 𝑅 → ((deg‘𝑟) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝑔)))
1613, 15orbi12d 748 . . . . . . . . . 10 (𝑟 = 𝑅 → ((𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔))))
1712, 16sbcie 3611 . . . . . . . . 9 ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)))
18 simpr 479 . . . . . . . . . . . 12 ((𝑓 = 𝐹𝑔 = 𝐺) → 𝑔 = 𝐺)
1918fveq2d 6357 . . . . . . . . . . 11 ((𝑓 = 𝐹𝑔 = 𝐺) → (deg‘𝑔) = (deg‘𝐺))
2019breq2d 4816 . . . . . . . . . 10 ((𝑓 = 𝐹𝑔 = 𝐺) → ((deg‘𝑅) < (deg‘𝑔) ↔ (deg‘𝑅) < (deg‘𝐺)))
2120orbi2d 740 . . . . . . . . 9 ((𝑓 = 𝐹𝑔 = 𝐺) → ((𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2217, 21syl5bb 272 . . . . . . . 8 ((𝑓 = 𝐹𝑔 = 𝐺) → ([𝑅 / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2310, 22bitrd 268 . . . . . . 7 ((𝑓 = 𝐹𝑔 = 𝐺) → ([(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔)) ↔ (𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
2423riotabidv 6777 . . . . . 6 ((𝑓 = 𝐹𝑔 = 𝐺) → (𝑞 ∈ (Poly‘ℂ)[(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
25 df-quot 24265 . . . . . 6 quot = (𝑓 ∈ (Poly‘ℂ), 𝑔 ∈ ((Poly‘ℂ) ∖ {0𝑝}) ↦ (𝑞 ∈ (Poly‘ℂ)[(𝑓𝑓 − (𝑔𝑓 · 𝑞)) / 𝑟](𝑟 = 0𝑝 ∨ (deg‘𝑟) < (deg‘𝑔))))
26 riotaex 6779 . . . . . 6 (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))) ∈ V
2724, 25, 26ovmpt2a 6957 . . . . 5 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ ((Poly‘ℂ) ∖ {0𝑝})) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
284, 27sylan2br 494 . . . 4 ((𝐹 ∈ (Poly‘ℂ) ∧ (𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝)) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
29283impb 1108 . . 3 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘ℂ) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
303, 29syl3an2 1168 . 2 ((𝐹 ∈ (Poly‘ℂ) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
312, 30syl3an1 1167 1 ((𝐹 ∈ (Poly‘𝑆) ∧ 𝐺 ∈ (Poly‘𝑆) ∧ 𝐺 ≠ 0𝑝) → (𝐹 quot 𝐺) = (𝑞 ∈ (Poly‘ℂ)(𝑅 = 0𝑝 ∨ (deg‘𝑅) < (deg‘𝐺))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  [wsbc 3576  cdif 3712  {csn 4321   class class class wbr 4804  cfv 6049  crio 6774  (class class class)co 6814  𝑓 cof 7061  cc 10146   · cmul 10153   < clt 10286  cmin 10478  0𝑝c0p 23655  Polycply 24159  degcdgr 24162   quot cquot 24264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-i2m1 10216  ax-1ne0 10217  ax-rrecex 10220  ax-cnre 10221
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-map 8027  df-nn 11233  df-n0 11505  df-ply 24163  df-quot 24265
This theorem is referenced by:  quotlem  24274
  Copyright terms: Public domain W3C validator