MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qus0 Structured version   Visualization version   GIF version

Theorem qus0 18340
Description: Value of the group identity operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qus0.p 0 = (0g𝐺)
Assertion
Ref Expression
qus0 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))

Proof of Theorem qus0
StepHypRef Expression
1 nsgsubg 18312 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 18286 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 eqid 2823 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
5 qus0.p . . . . . . 7 0 = (0g𝐺)
64, 5grpidcl 18133 . . . . . 6 (𝐺 ∈ Grp → 0 ∈ (Base‘𝐺))
73, 6syl 17 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 0 ∈ (Base‘𝐺))
8 qusgrp.h . . . . . 6 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2823 . . . . . 6 (+g𝐺) = (+g𝐺)
10 eqid 2823 . . . . . 6 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 18339 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆))
127, 7, 11mpd3an23 1459 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆))
134, 9, 5grplid 18135 . . . . . 6 ((𝐺 ∈ Grp ∧ 0 ∈ (Base‘𝐺)) → ( 0 (+g𝐺) 0 ) = 0 )
143, 7, 13syl2anc 586 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → ( 0 (+g𝐺) 0 ) = 0 )
1514eceq1d 8330 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [( 0 (+g𝐺) 0 )](𝐺 ~QG 𝑆) = [ 0 ](𝐺 ~QG 𝑆))
1612, 15eqtrd 2858 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆))
178qusgrp 18337 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
18 eqid 2823 . . . . . 6 (Base‘𝐻) = (Base‘𝐻)
198, 4, 18quseccl 18338 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 0 ∈ (Base‘𝐺)) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
207, 19mpdan 685 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
21 eqid 2823 . . . . 5 (0g𝐻) = (0g𝐻)
2218, 10, 21grpid 18141 . . . 4 ((𝐻 ∈ Grp ∧ [ 0 ](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → (([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆)))
2317, 20, 22syl2anc 586 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → (([ 0 ](𝐺 ~QG 𝑆)(+g𝐻)[ 0 ](𝐺 ~QG 𝑆)) = [ 0 ](𝐺 ~QG 𝑆) ↔ (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆)))
2416, 23mpbid 234 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (0g𝐻) = [ 0 ](𝐺 ~QG 𝑆))
2524eqcomd 2829 1 (𝑆 ∈ (NrmSGrp‘𝐺) → [ 0 ](𝐺 ~QG 𝑆) = (0g𝐻))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wcel 2114  cfv 6357  (class class class)co 7158  [cec 8289  Basecbs 16485  +gcplusg 16567  0gc0g 16715   /s cqus 16780  Grpcgrp 18105  SubGrpcsubg 18275  NrmSGrpcnsg 18276   ~QG cqg 18277
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-ec 8293  df-qs 8297  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-ip 16585  df-tset 16586  df-ple 16587  df-ds 16589  df-0g 16717  df-imas 16783  df-qus 16784  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278  df-nsg 18279  df-eqg 18280
This theorem is referenced by:  qusinv  18341  qustgphaus  22733  qusker  30920  qsidomlem1  30967  qsidomlem2  30968
  Copyright terms: Public domain W3C validator