MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qus1 Structured version   Visualization version   GIF version

Theorem qus1 19175
Description: The multiplicative identity of the quotient ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
qusring.i 𝐼 = (2Ideal‘𝑅)
qus1.o 1 = (1r𝑅)
Assertion
Ref Expression
qus1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))

Proof of Theorem qus1
Dummy variables 𝑎 𝑏 𝑐 𝑑 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring.u . . 3 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
21a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
3 eqid 2621 . . 3 (Base‘𝑅) = (Base‘𝑅)
43a1i 11 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
5 eqid 2621 . 2 (+g𝑅) = (+g𝑅)
6 eqid 2621 . 2 (.r𝑅) = (.r𝑅)
7 qus1.o . 2 1 = (1r𝑅)
8 eqid 2621 . . . . . . 7 (LIdeal‘𝑅) = (LIdeal‘𝑅)
9 eqid 2621 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
10 eqid 2621 . . . . . . 7 (LIdeal‘(oppr𝑅)) = (LIdeal‘(oppr𝑅))
11 qusring.i . . . . . . 7 𝐼 = (2Ideal‘𝑅)
128, 9, 10, 112idlval 19173 . . . . . 6 𝐼 = ((LIdeal‘𝑅) ∩ (LIdeal‘(oppr𝑅)))
1312elin2 3785 . . . . 5 (𝑆𝐼 ↔ (𝑆 ∈ (LIdeal‘𝑅) ∧ 𝑆 ∈ (LIdeal‘(oppr𝑅))))
1413simplbi 476 . . . 4 (𝑆𝐼𝑆 ∈ (LIdeal‘𝑅))
158lidlsubg 19155 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (LIdeal‘𝑅)) → 𝑆 ∈ (SubGrp‘𝑅))
1614, 15sylan2 491 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
17 eqid 2621 . . . 4 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
183, 17eqger 17584 . . 3 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
1916, 18syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
20 ringabl 18520 . . . . . 6 (𝑅 ∈ Ring → 𝑅 ∈ Abel)
2120adantr 481 . . . . 5 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Abel)
22 ablnsg 18190 . . . . 5 (𝑅 ∈ Abel → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
2321, 22syl 17 . . . 4 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (NrmSGrp‘𝑅) = (SubGrp‘𝑅))
2416, 23eleqtrrd 2701 . . 3 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (NrmSGrp‘𝑅))
253, 17, 5eqgcpbl 17588 . . 3 (𝑆 ∈ (NrmSGrp‘𝑅) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
2624, 25syl 17 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(+g𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(+g𝑅)𝑑)))
273, 17, 11, 62idlcpbl 19174 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
28 simpl 473 . 2 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
292, 4, 5, 6, 7, 19, 26, 27, 28qusring2 18560 1 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → (𝑈 ∈ Ring ∧ [ 1 ](𝑅 ~QG 𝑆) = (1r𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4623  cfv 5857  (class class class)co 6615   Er wer 7699  [cec 7700  Basecbs 15800  +gcplusg 15881  .rcmulr 15882   /s cqus 16105  SubGrpcsubg 17528  NrmSGrpcnsg 17529   ~QG cqg 17530  Abelcabl 18134  1rcur 18441  Ringcrg 18487  opprcoppr 18562  LIdealclidl 19110  2Idealc2idl 19171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-tpos 7312  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-1o 7520  df-oadd 7524  df-er 7702  df-ec 7704  df-qs 7708  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-nn 10981  df-2 11039  df-3 11040  df-4 11041  df-5 11042  df-6 11043  df-7 11044  df-8 11045  df-9 11046  df-n0 11253  df-z 11338  df-dec 11454  df-uz 11648  df-fz 12285  df-struct 15802  df-ndx 15803  df-slot 15804  df-base 15805  df-sets 15806  df-ress 15807  df-plusg 15894  df-mulr 15895  df-sca 15897  df-vsca 15898  df-ip 15899  df-tset 15900  df-ple 15901  df-ds 15904  df-0g 16042  df-imas 16108  df-qus 16109  df-mgm 17182  df-sgrp 17224  df-mnd 17235  df-grp 17365  df-minusg 17366  df-sbg 17367  df-subg 17531  df-nsg 17532  df-eqg 17533  df-cmn 18135  df-abl 18136  df-mgp 18430  df-ur 18442  df-ring 18489  df-oppr 18563  df-subrg 18718  df-lmod 18805  df-lss 18873  df-sra 19112  df-rgmod 19113  df-lidl 19114  df-2idl 19172
This theorem is referenced by:  qusring  19176  qusrhm  19177
  Copyright terms: Public domain W3C validator