MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusadd Structured version   Visualization version   GIF version

Theorem qusadd 17698
Description: Value of the group operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusadd.v 𝑉 = (Base‘𝐺)
qusadd.p + = (+g𝐺)
qusadd.a = (+g𝐻)
Assertion
Ref Expression
qusadd ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qusadd
Dummy variables 𝑎 𝑏 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusgrp.h . . 3 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
21a1i 11 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆)))
3 qusadd.v . . 3 𝑉 = (Base‘𝐺)
43a1i 11 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑉 = (Base‘𝐺))
5 nsgsubg 17673 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
6 eqid 2651 . . . 4 (𝐺 ~QG 𝑆) = (𝐺 ~QG 𝑆)
73, 6eqger 17691 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑆) Er 𝑉)
85, 7syl 17 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → (𝐺 ~QG 𝑆) Er 𝑉)
9 subgrcl 17646 . . 3 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
105, 9syl 17 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
11 qusadd.p . . 3 + = (+g𝐺)
123, 6, 11eqgcpbl 17695 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝑎(𝐺 ~QG 𝑆)𝑝𝑏(𝐺 ~QG 𝑆)𝑞) → (𝑎 + 𝑏)(𝐺 ~QG 𝑆)(𝑝 + 𝑞)))
133, 11grpcl 17477 . . . 4 ((𝐺 ∈ Grp ∧ 𝑝𝑉𝑞𝑉) → (𝑝 + 𝑞) ∈ 𝑉)
14133expb 1285 . . 3 ((𝐺 ∈ Grp ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
1510, 14sylan 487 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝑝𝑉𝑞𝑉)) → (𝑝 + 𝑞) ∈ 𝑉)
16 qusadd.a . 2 = (+g𝐻)
172, 4, 8, 10, 12, 15, 11, 16qusaddval 16260 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆) [𝑌](𝐺 ~QG 𝑆)) = [(𝑋 + 𝑌)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1054   = wceq 1523  wcel 2030  cfv 5926  (class class class)co 6690   Er wer 7784  [cec 7785  Basecbs 15904  +gcplusg 15988   /s cqus 16212  Grpcgrp 17469  SubGrpcsubg 17635  NrmSGrpcnsg 17636   ~QG cqg 17637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-ec 7789  df-qs 7793  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-dec 11532  df-uz 11726  df-fz 12365  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-ip 16006  df-tset 16007  df-ple 16008  df-ds 16011  df-0g 16149  df-imas 16215  df-qus 16216  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-grp 17472  df-minusg 17473  df-subg 17638  df-nsg 17639  df-eqg 17640
This theorem is referenced by:  qus0  17699  qusinv  17700  qussub  17701  qusghm  17744  qusabl  18314
  Copyright terms: Public domain W3C validator