MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quscrng Structured version   Visualization version   GIF version

Theorem quscrng 19941
Description: The quotient of a commutative ring by an ideal is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015.)
Hypotheses
Ref Expression
quscrng.u 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
quscrng.i 𝐼 = (LIdeal‘𝑅)
Assertion
Ref Expression
quscrng ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)

Proof of Theorem quscrng
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑢 𝑣 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 crngring 19237 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
21adantr 481 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑅 ∈ Ring)
3 simpr 485 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆𝐼)
4 quscrng.i . . . . . 6 𝐼 = (LIdeal‘𝑅)
54crng2idl 19940 . . . . 5 (𝑅 ∈ CRing → 𝐼 = (2Ideal‘𝑅))
65adantr 481 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝐼 = (2Ideal‘𝑅))
73, 6eleqtrd 2912 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (2Ideal‘𝑅))
8 quscrng.u . . . 4 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆))
9 eqid 2818 . . . 4 (2Ideal‘𝑅) = (2Ideal‘𝑅)
108, 9qusring 19937 . . 3 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → 𝑈 ∈ Ring)
112, 7, 10syl2anc 584 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ Ring)
128a1i 11 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 = (𝑅 /s (𝑅 ~QG 𝑆)))
13 eqidd 2819 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (Base‘𝑅) = (Base‘𝑅))
14 ovexd 7180 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) ∈ V)
1512, 13, 14, 2qusbas 16806 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = (Base‘𝑈))
1615eleq2d 2895 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑥 ∈ (Base‘𝑈)))
1715eleq2d 2895 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ↔ 𝑦 ∈ (Base‘𝑈)))
1816, 17anbi12d 630 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ↔ (𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈))))
19 eqid 2818 . . . . . 6 ((Base‘𝑅) / (𝑅 ~QG 𝑆)) = ((Base‘𝑅) / (𝑅 ~QG 𝑆))
20 oveq2 7153 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)𝑦))
21 oveq1 7152 . . . . . . 7 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) = (𝑦(.r𝑈)𝑥))
2220, 21eqeq12d 2834 . . . . . 6 ([𝑢](𝑅 ~QG 𝑆) = 𝑦 → ((𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥) ↔ (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
23 oveq1 7152 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)))
24 oveq2 7153 . . . . . . . . 9 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
2523, 24eqeq12d 2834 . . . . . . . 8 ([𝑣](𝑅 ~QG 𝑆) = 𝑥 → (([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) ↔ (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥)))
26 eqid 2818 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
27 eqid 2818 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
2826, 27crngcom 19241 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
2928ad4ant134 1166 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → (𝑢(.r𝑅)𝑣) = (𝑣(.r𝑅)𝑢))
3029eceq1d 8317 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
314lidlsubg 19916 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
321, 31sylan 580 . . . . . . . . . . . 12 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑆 ∈ (SubGrp‘𝑅))
33 eqid 2818 . . . . . . . . . . . . 13 (𝑅 ~QG 𝑆) = (𝑅 ~QG 𝑆)
3426, 33eqger 18268 . . . . . . . . . . . 12 (𝑆 ∈ (SubGrp‘𝑅) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3532, 34syl 17 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → (𝑅 ~QG 𝑆) Er (Base‘𝑅))
3626, 33, 9, 272idlcpbl 19935 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑆 ∈ (2Ideal‘𝑅)) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
372, 7, 36syl2anc 584 . . . . . . . . . . 11 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑎(𝑅 ~QG 𝑆)𝑐𝑏(𝑅 ~QG 𝑆)𝑑) → (𝑎(.r𝑅)𝑏)(𝑅 ~QG 𝑆)(𝑐(.r𝑅)𝑑)))
3826, 27ringcl 19240 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅)) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
39383expb 1112 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
402, 39sylan 580 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ (𝑐 ∈ (Base‘𝑅) ∧ 𝑑 ∈ (Base‘𝑅))) → (𝑐(.r𝑅)𝑑) ∈ (Base‘𝑅))
41 eqid 2818 . . . . . . . . . . 11 (.r𝑈) = (.r𝑈)
4212, 13, 35, 2, 37, 40, 27, 41qusmulval 16816 . . . . . . . . . 10 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
43423expa 1110 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)) = [(𝑢(.r𝑅)𝑣)](𝑅 ~QG 𝑆))
4412, 13, 35, 2, 37, 40, 27, 41qusmulval 16816 . . . . . . . . . . 11 (((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
45443expa 1110 . . . . . . . . . 10 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑣 ∈ (Base‘𝑅)) ∧ 𝑢 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4645an32s 648 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = [(𝑣(.r𝑅)𝑢)](𝑅 ~QG 𝑆))
4730, 43, 463eqtr4rd 2864 . . . . . . . 8 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑣 ∈ (Base‘𝑅)) → ([𝑣](𝑅 ~QG 𝑆)(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)[𝑣](𝑅 ~QG 𝑆)))
4819, 25, 47ectocld 8353 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑢 ∈ (Base‘𝑅)) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
4948an32s 648 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑢 ∈ (Base‘𝑅)) → (𝑥(.r𝑈)[𝑢](𝑅 ~QG 𝑆)) = ([𝑢](𝑅 ~QG 𝑆)(.r𝑈)𝑥))
5019, 22, 49ectocld 8353 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑆𝐼) ∧ 𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
5150expl 458 . . . 4 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆)) ∧ 𝑦 ∈ ((Base‘𝑅) / (𝑅 ~QG 𝑆))) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5218, 51sylbird 261 . . 3 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ((𝑥 ∈ (Base‘𝑈) ∧ 𝑦 ∈ (Base‘𝑈)) → (𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5352ralrimivv 3187 . 2 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥))
54 eqid 2818 . . 3 (Base‘𝑈) = (Base‘𝑈)
5554, 41iscrng2 19242 . 2 (𝑈 ∈ CRing ↔ (𝑈 ∈ Ring ∧ ∀𝑥 ∈ (Base‘𝑈)∀𝑦 ∈ (Base‘𝑈)(𝑥(.r𝑈)𝑦) = (𝑦(.r𝑈)𝑥)))
5611, 53, 55sylanbrc 583 1 ((𝑅 ∈ CRing ∧ 𝑆𝐼) → 𝑈 ∈ CRing)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  Vcvv 3492   class class class wbr 5057  cfv 6348  (class class class)co 7145   Er wer 8275  [cec 8276   / cqs 8277  Basecbs 16471  .rcmulr 16554   /s cqus 16766  SubGrpcsubg 18211   ~QG cqg 18213  Ringcrg 19226  CRingccrg 19227  LIdealclidl 19871  2Idealc2idl 19932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-tpos 7881  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-ec 8280  df-qs 8284  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12881  df-struct 16473  df-ndx 16474  df-slot 16475  df-base 16477  df-sets 16478  df-ress 16479  df-plusg 16566  df-mulr 16567  df-sca 16569  df-vsca 16570  df-ip 16571  df-tset 16572  df-ple 16573  df-ds 16575  df-0g 16703  df-imas 16769  df-qus 16770  df-mgm 17840  df-sgrp 17889  df-mnd 17900  df-grp 18044  df-minusg 18045  df-sbg 18046  df-subg 18214  df-nsg 18215  df-eqg 18216  df-cmn 18837  df-abl 18838  df-mgp 19169  df-ur 19181  df-ring 19228  df-cring 19229  df-oppr 19302  df-subrg 19462  df-lmod 19565  df-lss 19633  df-lsp 19673  df-sra 19873  df-rgmod 19874  df-lidl 19875  df-rsp 19876  df-2idl 19933
This theorem is referenced by:  zncrng2  20609  qsidomlem2  30883
  Copyright terms: Public domain W3C validator