MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusinv Structured version   Visualization version   GIF version

Theorem qusinv 18333
Description: Value of the group inverse operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qusinv.i 𝐼 = (invg𝐺)
qusinv.n 𝑁 = (invg𝐻)
Assertion
Ref Expression
qusinv ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))

Proof of Theorem qusinv
StepHypRef Expression
1 nsgsubg 18304 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
2 subgrcl 18278 . . . . . 6 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
31, 2syl 17 . . . . 5 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
4 qusinv.v . . . . . 6 𝑉 = (Base‘𝐺)
5 qusinv.i . . . . . 6 𝐼 = (invg𝐺)
64, 5grpinvcl 18145 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
73, 6sylan 582 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝐼𝑋) ∈ 𝑉)
8 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
9 eqid 2821 . . . . 5 (+g𝐺) = (+g𝐺)
10 eqid 2821 . . . . 5 (+g𝐻) = (+g𝐻)
118, 4, 9, 10qusadd 18331 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ (𝐼𝑋) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
127, 11mpd3an3 1458 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆))
13 eqid 2821 . . . . . 6 (0g𝐺) = (0g𝐺)
144, 9, 13, 5grprinv 18147 . . . . 5 ((𝐺 ∈ Grp ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
153, 14sylan 582 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑋(+g𝐺)(𝐼𝑋)) = (0g𝐺))
1615eceq1d 8322 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝑋(+g𝐺)(𝐼𝑋))](𝐺 ~QG 𝑆) = [(0g𝐺)](𝐺 ~QG 𝑆))
178, 13qus0 18332 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1817adantr 483 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(0g𝐺)](𝐺 ~QG 𝑆) = (0g𝐻))
1912, 16, 183eqtrd 2860 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻))
208qusgrp 18329 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐻 ∈ Grp)
2120adantr 483 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → 𝐻 ∈ Grp)
22 eqid 2821 . . . 4 (Base‘𝐻) = (Base‘𝐻)
238, 4, 22quseccl 18330 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
248, 4, 22quseccl 18330 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ (𝐼𝑋) ∈ 𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
257, 24syldan 593 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
26 eqid 2821 . . . 4 (0g𝐻) = (0g𝐻)
27 qusinv.n . . . 4 𝑁 = (invg𝐻)
2822, 10, 26, 27grpinvid1 18148 . . 3 ((𝐻 ∈ Grp ∧ [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [(𝐼𝑋)](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
2921, 23, 25, 28syl3anc 1367 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → ((𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆) ↔ ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[(𝐼𝑋)](𝐺 ~QG 𝑆)) = (0g𝐻)))
3019, 29mpbird 259 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → (𝑁‘[𝑋](𝐺 ~QG 𝑆)) = [(𝐼𝑋)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  cfv 6349  (class class class)co 7150  [cec 8281  Basecbs 16477  +gcplusg 16559  0gc0g 16707   /s cqus 16772  Grpcgrp 18097  invgcminusg 18098  SubGrpcsubg 18267  NrmSGrpcnsg 18268   ~QG cqg 18269
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-0g 16709  df-imas 16775  df-qus 16776  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-nsg 18271  df-eqg 18272
This theorem is referenced by:  qussub  18334
  Copyright terms: Public domain W3C validator