MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qusring2 Structured version   Visualization version   GIF version

Theorem qusring2 19364
Description: The quotient structure of a ring is a ring. (Contributed by Mario Carneiro, 14-Jun-2015.)
Hypotheses
Ref Expression
qusring2.u (𝜑𝑈 = (𝑅 /s ))
qusring2.v (𝜑𝑉 = (Base‘𝑅))
qusring2.p + = (+g𝑅)
qusring2.t · = (.r𝑅)
qusring2.o 1 = (1r𝑅)
qusring2.r (𝜑 Er 𝑉)
qusring2.e1 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
qusring2.e2 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
qusring2.x (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
qusring2 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Distinct variable groups:   𝑞,𝑝, +   1 ,𝑝,𝑞   𝑎,𝑏,𝑝,𝑞,𝑈   𝑉,𝑎,𝑏,𝑝,𝑞   ,𝑎,𝑏,𝑝,𝑞   𝜑,𝑎,𝑏,𝑝,𝑞   · ,𝑝,𝑞   𝑅,𝑝,𝑞
Allowed substitution hints:   + (𝑎,𝑏)   𝑅(𝑎,𝑏)   · (𝑎,𝑏)   1 (𝑎,𝑏)

Proof of Theorem qusring2
Dummy variables 𝑢 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 qusring2.u . . . 4 (𝜑𝑈 = (𝑅 /s ))
2 qusring2.v . . . 4 (𝜑𝑉 = (Base‘𝑅))
3 eqid 2821 . . . 4 (𝑢𝑉 ↦ [𝑢] ) = (𝑢𝑉 ↦ [𝑢] )
4 qusring2.r . . . . 5 (𝜑 Er 𝑉)
5 fvex 6678 . . . . . 6 (Base‘𝑅) ∈ V
62, 5eqeltrdi 2921 . . . . 5 (𝜑𝑉 ∈ V)
7 erex 8307 . . . . 5 ( Er 𝑉 → (𝑉 ∈ V → ∈ V))
84, 6, 7sylc 65 . . . 4 (𝜑 ∈ V)
9 qusring2.x . . . 4 (𝜑𝑅 ∈ Ring)
101, 2, 3, 8, 9qusval 16809 . . 3 (𝜑𝑈 = ((𝑢𝑉 ↦ [𝑢] ) “s 𝑅))
11 qusring2.p . . 3 + = (+g𝑅)
12 qusring2.t . . 3 · = (.r𝑅)
13 qusring2.o . . 3 1 = (1r𝑅)
141, 2, 3, 8, 9quslem 16810 . . 3 (𝜑 → (𝑢𝑉 ↦ [𝑢] ):𝑉onto→(𝑉 / ))
159adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑅 ∈ Ring)
16 simprl 769 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥𝑉)
172adantr 483 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑉 = (Base‘𝑅))
1816, 17eleqtrd 2915 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑥 ∈ (Base‘𝑅))
19 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦𝑉)
2019, 17eleqtrd 2915 . . . . . 6 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → 𝑦 ∈ (Base‘𝑅))
21 eqid 2821 . . . . . . 7 (Base‘𝑅) = (Base‘𝑅)
2221, 11ringacl 19322 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2315, 18, 20, 22syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ (Base‘𝑅))
2423, 17eleqtrrd 2916 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 + 𝑦) ∈ 𝑉)
25 qusring2.e1 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 + 𝑏) (𝑝 + 𝑞)))
264, 6, 3, 24, 25ercpbl 16816 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 + 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 + 𝑞))))
2721, 12ringcl 19305 . . . . . 6 ((𝑅 ∈ Ring ∧ 𝑥 ∈ (Base‘𝑅) ∧ 𝑦 ∈ (Base‘𝑅)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
2815, 18, 20, 27syl3anc 1367 . . . . 5 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ (Base‘𝑅))
2928, 17eleqtrrd 2916 . . . 4 ((𝜑 ∧ (𝑥𝑉𝑦𝑉)) → (𝑥 · 𝑦) ∈ 𝑉)
30 qusring2.e2 . . . 4 (𝜑 → ((𝑎 𝑝𝑏 𝑞) → (𝑎 · 𝑏) (𝑝 · 𝑞)))
314, 6, 3, 29, 30ercpbl 16816 . . 3 ((𝜑 ∧ (𝑎𝑉𝑏𝑉) ∧ (𝑝𝑉𝑞𝑉)) → ((((𝑢𝑉 ↦ [𝑢] )‘𝑎) = ((𝑢𝑉 ↦ [𝑢] )‘𝑝) ∧ ((𝑢𝑉 ↦ [𝑢] )‘𝑏) = ((𝑢𝑉 ↦ [𝑢] )‘𝑞)) → ((𝑢𝑉 ↦ [𝑢] )‘(𝑎 · 𝑏)) = ((𝑢𝑉 ↦ [𝑢] )‘(𝑝 · 𝑞))))
3210, 2, 11, 12, 13, 14, 26, 31, 9imasring 19363 . 2 (𝜑 → (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
334, 6, 3divsfval 16814 . . . . 5 (𝜑 → ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = [ 1 ] )
3433eqcomd 2827 . . . 4 (𝜑 → [ 1 ] = ((𝑢𝑉 ↦ [𝑢] )‘ 1 ))
3534eqeq1d 2823 . . 3 (𝜑 → ([ 1 ] = (1r𝑈) ↔ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈)))
3635anbi2d 630 . 2 (𝜑 → ((𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)) ↔ (𝑈 ∈ Ring ∧ ((𝑢𝑉 ↦ [𝑢] )‘ 1 ) = (1r𝑈))))
3732, 36mpbird 259 1 (𝜑 → (𝑈 ∈ Ring ∧ [ 1 ] = (1r𝑈)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1533  wcel 2110  Vcvv 3495   class class class wbr 5059  cmpt 5139  cfv 6350  (class class class)co 7150   Er wer 8280  [cec 8281   / cqs 8282  Basecbs 16477  +gcplusg 16559  .rcmulr 16560   /s cqus 16772  1rcur 19245  Ringcrg 19291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-0g 16709  df-imas 16775  df-qus 16776  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-mgp 19234  df-ur 19246  df-ring 19293
This theorem is referenced by:  qus1  20002
  Copyright terms: Public domain W3C validator