MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qussub Structured version   Visualization version   GIF version

Theorem qussub 17648
Description: Value of the group subtraction operation in a quotient group. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qusgrp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
qusinv.v 𝑉 = (Base‘𝐺)
qussub.p = (-g𝐺)
qussub.a 𝑁 = (-g𝐻)
Assertion
Ref Expression
qussub ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))

Proof of Theorem qussub
StepHypRef Expression
1 qusgrp.h . . . . 5 𝐻 = (𝐺 /s (𝐺 ~QG 𝑆))
2 qusinv.v . . . . 5 𝑉 = (Base‘𝐺)
3 eqid 2621 . . . . 5 (Base‘𝐻) = (Base‘𝐻)
41, 2, 3quseccl 17644 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
543adant3 1080 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
61, 2, 3quseccl 17644 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
763adant2 1079 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻))
8 eqid 2621 . . . 4 (+g𝐻) = (+g𝐻)
9 eqid 2621 . . . 4 (invg𝐻) = (invg𝐻)
10 qussub.a . . . 4 𝑁 = (-g𝐻)
113, 8, 9, 10grpsubval 17459 . . 3 (([𝑋](𝐺 ~QG 𝑆) ∈ (Base‘𝐻) ∧ [𝑌](𝐺 ~QG 𝑆) ∈ (Base‘𝐻)) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
125, 7, 11syl2anc 693 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))))
13 eqid 2621 . . . . 5 (invg𝐺) = (invg𝐺)
141, 2, 13, 9qusinv 17647 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
15143adant2 1079 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆)) = [((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆))
1615oveq2d 6663 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)((invg𝐻)‘[𝑌](𝐺 ~QG 𝑆))) = ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)))
17 nsgsubg 17620 . . . . . . 7 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
18 subgrcl 17593 . . . . . . 7 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
1917, 18syl 17 . . . . . 6 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝐺 ∈ Grp)
202, 13grpinvcl 17461 . . . . . 6 ((𝐺 ∈ Grp ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
2119, 20sylan 488 . . . . 5 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
22213adant2 1079 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ((invg𝐺)‘𝑌) ∈ 𝑉)
23 eqid 2621 . . . . 5 (+g𝐺) = (+g𝐺)
241, 2, 23, 8qusadd 17645 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉 ∧ ((invg𝐺)‘𝑌) ∈ 𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
2522, 24syld3an3 1370 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
26 qussub.p . . . . . 6 = (-g𝐺)
272, 23, 13, 26grpsubval 17459 . . . . 5 ((𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
28273adant1 1078 . . . 4 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → (𝑋 𝑌) = (𝑋(+g𝐺)((invg𝐺)‘𝑌)))
2928eceq1d 7780 . . 3 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → [(𝑋 𝑌)](𝐺 ~QG 𝑆) = [(𝑋(+g𝐺)((invg𝐺)‘𝑌))](𝐺 ~QG 𝑆))
3025, 29eqtr4d 2658 . 2 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)(+g𝐻)[((invg𝐺)‘𝑌)](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
3112, 16, 303eqtrd 2659 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝑋𝑉𝑌𝑉) → ([𝑋](𝐺 ~QG 𝑆)𝑁[𝑌](𝐺 ~QG 𝑆)) = [(𝑋 𝑌)](𝐺 ~QG 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1037   = wceq 1482  wcel 1989  cfv 5886  (class class class)co 6647  [cec 7737  Basecbs 15851  +gcplusg 15935   /s cqus 16159  Grpcgrp 17416  invgcminusg 17417  -gcsg 17418  SubGrpcsubg 17582  NrmSGrpcnsg 17583   ~QG cqg 17584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1721  ax-4 1736  ax-5 1838  ax-6 1887  ax-7 1934  ax-8 1991  ax-9 1998  ax-10 2018  ax-11 2033  ax-12 2046  ax-13 2245  ax-ext 2601  ax-rep 4769  ax-sep 4779  ax-nul 4787  ax-pow 4841  ax-pr 4904  ax-un 6946  ax-cnex 9989  ax-resscn 9990  ax-1cn 9991  ax-icn 9992  ax-addcl 9993  ax-addrcl 9994  ax-mulcl 9995  ax-mulrcl 9996  ax-mulcom 9997  ax-addass 9998  ax-mulass 9999  ax-distr 10000  ax-i2m1 10001  ax-1ne0 10002  ax-1rid 10003  ax-rnegex 10004  ax-rrecex 10005  ax-cnre 10006  ax-pre-lttri 10007  ax-pre-lttrn 10008  ax-pre-ltadd 10009  ax-pre-mulgt0 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1485  df-ex 1704  df-nf 1709  df-sb 1880  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2752  df-ne 2794  df-nel 2897  df-ral 2916  df-rex 2917  df-reu 2918  df-rmo 2919  df-rab 2920  df-v 3200  df-sbc 3434  df-csb 3532  df-dif 3575  df-un 3577  df-in 3579  df-ss 3586  df-pss 3588  df-nul 3914  df-if 4085  df-pw 4158  df-sn 4176  df-pr 4178  df-tp 4180  df-op 4182  df-uni 4435  df-int 4474  df-iun 4520  df-br 4652  df-opab 4711  df-mpt 4728  df-tr 4751  df-id 5022  df-eprel 5027  df-po 5033  df-so 5034  df-fr 5071  df-we 5073  df-xp 5118  df-rel 5119  df-cnv 5120  df-co 5121  df-dm 5122  df-rn 5123  df-res 5124  df-ima 5125  df-pred 5678  df-ord 5724  df-on 5725  df-lim 5726  df-suc 5727  df-iota 5849  df-fun 5888  df-fn 5889  df-f 5890  df-f1 5891  df-fo 5892  df-f1o 5893  df-fv 5894  df-riota 6608  df-ov 6650  df-oprab 6651  df-mpt2 6652  df-om 7063  df-1st 7165  df-2nd 7166  df-wrecs 7404  df-recs 7465  df-rdg 7503  df-1o 7557  df-oadd 7561  df-er 7739  df-ec 7741  df-qs 7745  df-en 7953  df-dom 7954  df-sdom 7955  df-fin 7956  df-sup 8345  df-inf 8346  df-pnf 10073  df-mnf 10074  df-xr 10075  df-ltxr 10076  df-le 10077  df-sub 10265  df-neg 10266  df-nn 11018  df-2 11076  df-3 11077  df-4 11078  df-5 11079  df-6 11080  df-7 11081  df-8 11082  df-9 11083  df-n0 11290  df-z 11375  df-dec 11491  df-uz 11685  df-fz 12324  df-struct 15853  df-ndx 15854  df-slot 15855  df-base 15857  df-sets 15858  df-ress 15859  df-plusg 15948  df-mulr 15949  df-sca 15951  df-vsca 15952  df-ip 15953  df-tset 15954  df-ple 15955  df-ds 15958  df-0g 16096  df-imas 16162  df-qus 16163  df-mgm 17236  df-sgrp 17278  df-mnd 17289  df-grp 17419  df-minusg 17420  df-sbg 17421  df-subg 17585  df-nsg 17586  df-eqg 17587
This theorem is referenced by:  qustgplem  21918
  Copyright terms: Public domain W3C validator