MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qustgpopn Structured version   Visualization version   GIF version

Theorem qustgpopn 22722
Description: A quotient map in a topological group is an open map. (Contributed by Mario Carneiro, 18-Sep-2015.)
Hypotheses
Ref Expression
qustgp.h 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
qustgpopn.x 𝑋 = (Base‘𝐺)
qustgpopn.j 𝐽 = (TopOpen‘𝐺)
qustgpopn.k 𝐾 = (TopOpen‘𝐻)
qustgpopn.f 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
Assertion
Ref Expression
qustgpopn ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Distinct variable groups:   𝑥,𝐺   𝑥,𝐽   𝑥,𝑆   𝑥,𝑋   𝑥,𝐻   𝑥,𝐾   𝑥,𝑌
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem qustgpopn
Dummy variables 𝑎 𝑢 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 imassrn 5935 . . . 4 (𝐹𝑆) ⊆ ran 𝐹
2 qustgp.h . . . . . . 7 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌))
32a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐺 /s (𝐺 ~QG 𝑌)))
4 qustgpopn.x . . . . . . 7 𝑋 = (Base‘𝐺)
54a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑋 = (Base‘𝐺))
6 qustgpopn.f . . . . . 6 𝐹 = (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌))
7 ovex 7183 . . . . . . 7 (𝐺 ~QG 𝑌) ∈ V
87a1i 11 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐺 ~QG 𝑌) ∈ V)
9 simp1 1132 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐺 ∈ TopGrp)
103, 5, 6, 8, 9quslem 16810 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)))
11 forn 6588 . . . . 5 (𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌)) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
1210, 11syl 17 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ran 𝐹 = (𝑋 / (𝐺 ~QG 𝑌)))
131, 12sseqtrid 4019 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)))
14 eceq1 8321 . . . . . . . . . 10 (𝑥 = 𝑦 → [𝑥](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌))
1514cbvmptv 5162 . . . . . . . . 9 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
166, 15eqtri 2844 . . . . . . . 8 𝐹 = (𝑦𝑋 ↦ [𝑦](𝐺 ~QG 𝑌))
1716mptpreima 6087 . . . . . . 7 (𝐹 “ (𝐹𝑆)) = {𝑦𝑋 ∣ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
1817rabeq2i 3488 . . . . . 6 (𝑦 ∈ (𝐹 “ (𝐹𝑆)) ↔ (𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
196funmpt2 6389 . . . . . . . . 9 Fun 𝐹
20 fvelima 6726 . . . . . . . . 9 ((Fun 𝐹 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
2119, 20mpan 688 . . . . . . . 8 ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌))
22 qustgpopn.j . . . . . . . . . . . . . . . . . . 19 𝐽 = (TopOpen‘𝐺)
2322, 4tgptopon 22684 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → 𝐽 ∈ (TopOn‘𝑋))
249, 23syl 17 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐽 ∈ (TopOn‘𝑋))
25 simp3 1134 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝐽)
26 toponss 21529 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝑆𝐽) → 𝑆𝑋)
2724, 25, 26syl2anc 586 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑆𝑋)
2827adantr 483 . . . . . . . . . . . . . . 15 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → 𝑆𝑋)
2928sselda 3967 . . . . . . . . . . . . . 14 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑧𝑋)
30 eceq1 8321 . . . . . . . . . . . . . . 15 (𝑥 = 𝑧 → [𝑥](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
31 ecexg 8287 . . . . . . . . . . . . . . . 16 ((𝐺 ~QG 𝑌) ∈ V → [𝑧](𝐺 ~QG 𝑌) ∈ V)
327, 31ax-mp 5 . . . . . . . . . . . . . . 15 [𝑧](𝐺 ~QG 𝑌) ∈ V
3330, 6, 32fvmpt 6763 . . . . . . . . . . . . . 14 (𝑧𝑋 → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3429, 33syl 17 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐹𝑧) = [𝑧](𝐺 ~QG 𝑌))
3534eqeq1d 2823 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌)))
36 eqcom 2828 . . . . . . . . . . . 12 ([𝑧](𝐺 ~QG 𝑌) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌))
3735, 36syl6bb 289 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
38 nsgsubg 18304 . . . . . . . . . . . . . . 15 (𝑌 ∈ (NrmSGrp‘𝐺) → 𝑌 ∈ (SubGrp‘𝐺))
39383ad2ant2 1130 . . . . . . . . . . . . . 14 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝑌 ∈ (SubGrp‘𝐺))
4039ad2antrr 724 . . . . . . . . . . . . 13 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌 ∈ (SubGrp‘𝐺))
41 eqid 2821 . . . . . . . . . . . . . 14 (𝐺 ~QG 𝑌) = (𝐺 ~QG 𝑌)
424, 41eqger 18324 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → (𝐺 ~QG 𝑌) Er 𝑋)
4340, 42syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝐺 ~QG 𝑌) Er 𝑋)
44 simplr 767 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑦𝑋)
4543, 44erth 8332 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ [𝑦](𝐺 ~QG 𝑌) = [𝑧](𝐺 ~QG 𝑌)))
469ad2antrr 724 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝐺 ∈ TopGrp)
474subgss 18274 . . . . . . . . . . . . 13 (𝑌 ∈ (SubGrp‘𝐺) → 𝑌𝑋)
4840, 47syl 17 . . . . . . . . . . . 12 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → 𝑌𝑋)
49 eqid 2821 . . . . . . . . . . . . 13 (invg𝐺) = (invg𝐺)
50 eqid 2821 . . . . . . . . . . . . 13 (+g𝐺) = (+g𝐺)
514, 49, 50, 41eqgval 18323 . . . . . . . . . . . 12 ((𝐺 ∈ TopGrp ∧ 𝑌𝑋) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5246, 48, 51syl2anc 586 . . . . . . . . . . 11 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → (𝑦(𝐺 ~QG 𝑌)𝑧 ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
5337, 45, 523bitr2d 309 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) ↔ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)))
54 eqid 2821 . . . . . . . . . . . . . . . . . 18 (oppg𝐺) = (oppg𝐺)
55 eqid 2821 . . . . . . . . . . . . . . . . . 18 (+g‘(oppg𝐺)) = (+g‘(oppg𝐺))
5650, 54, 55oppgplus 18471 . . . . . . . . . . . . . . . . 17 ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎) = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))
5756mpteq2i 5151 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
5846adantr 483 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ TopGrp)
5954oppgtgp 22700 . . . . . . . . . . . . . . . . . 18 (𝐺 ∈ TopGrp → (oppg𝐺) ∈ TopGrp)
6058, 59syl 17 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (oppg𝐺) ∈ TopGrp)
6148sselda 3967 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
62 eqid 2821 . . . . . . . . . . . . . . . . . 18 (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) = (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎))
6354, 4oppgbas 18473 . . . . . . . . . . . . . . . . . 18 𝑋 = (Base‘(oppg𝐺))
6454, 22oppgtopn 18475 . . . . . . . . . . . . . . . . . 18 𝐽 = (TopOpen‘(oppg𝐺))
6562, 63, 55, 64tgplacthmeo 22705 . . . . . . . . . . . . . . . . 17 (((oppg𝐺) ∈ TopGrp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6660, 61, 65syl2anc 586 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ ((((invg𝐺)‘𝑦)(+g𝐺)𝑧)(+g‘(oppg𝐺))𝑎)) ∈ (𝐽Homeo𝐽))
6757, 66eqeltrrid 2918 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽))
68 hmeocn 22362 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽Homeo𝐽) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
6967, 68syl 17 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽))
7025ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑆𝐽)
71 cnima 21867 . . . . . . . . . . . . . 14 (((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐽 Cn 𝐽) ∧ 𝑆𝐽) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7269, 70, 71syl2anc 586 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽)
7344adantr 483 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦𝑋)
74 tgpgrp 22680 . . . . . . . . . . . . . . . . . . 19 (𝐺 ∈ TopGrp → 𝐺 ∈ Grp)
7558, 74syl 17 . . . . . . . . . . . . . . . . . 18 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝐺 ∈ Grp)
76 eqid 2821 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
774, 50, 76, 49grprinv 18147 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7875, 73, 77syl2anc 586 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)((invg𝐺)‘𝑦)) = (0g𝐺))
7978oveq1d 7165 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = ((0g𝐺)(+g𝐺)𝑧))
804, 49grpinvcl 18145 . . . . . . . . . . . . . . . . . 18 ((𝐺 ∈ Grp ∧ 𝑦𝑋) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8175, 73, 80syl2anc 586 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((invg𝐺)‘𝑦) ∈ 𝑋)
8229adantr 483 . . . . . . . . . . . . . . . . 17 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑋)
834, 50grpass 18106 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ (𝑦𝑋 ∧ ((invg𝐺)‘𝑦) ∈ 𝑋𝑧𝑋)) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
8475, 73, 81, 82, 83syl13anc 1368 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑦(+g𝐺)((invg𝐺)‘𝑦))(+g𝐺)𝑧) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
854, 50, 76grplid 18127 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑧𝑋) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8675, 82, 85syl2anc 586 . . . . . . . . . . . . . . . 16 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((0g𝐺)(+g𝐺)𝑧) = 𝑧)
8779, 84, 863eqtr3d 2864 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = 𝑧)
88 simplr 767 . . . . . . . . . . . . . . 15 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑧𝑆)
8987, 88eqeltrd 2913 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆)
90 oveq1 7157 . . . . . . . . . . . . . . . 16 (𝑎 = 𝑦 → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9190eleq1d 2897 . . . . . . . . . . . . . . 15 (𝑎 = 𝑦 → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 ↔ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
92 eqid 2821 . . . . . . . . . . . . . . . 16 (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
9392mptpreima 6087 . . . . . . . . . . . . . . 15 ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) = {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆}
9491, 93elrab2 3683 . . . . . . . . . . . . . 14 (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ↔ (𝑦𝑋 ∧ (𝑦(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆))
9573, 89, 94sylanbrc 585 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → 𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆))
96 ecexg 8287 . . . . . . . . . . . . . . . . . . 19 ((𝐺 ~QG 𝑌) ∈ V → [𝑥](𝐺 ~QG 𝑌) ∈ V)
977, 96ax-mp 5 . . . . . . . . . . . . . . . . . 18 [𝑥](𝐺 ~QG 𝑌) ∈ V
9897, 6fnmpti 6486 . . . . . . . . . . . . . . . . 17 𝐹 Fn 𝑋
9928ad3antrrr 728 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑆𝑋)
100 fnfvima 6989 . . . . . . . . . . . . . . . . . 18 ((𝐹 Fn 𝑋𝑆𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆))
1011003expia 1117 . . . . . . . . . . . . . . . . 17 ((𝐹 Fn 𝑋𝑆𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10298, 99, 101sylancr 589 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆)))
10375adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝐺 ∈ Grp)
104 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎𝑋)
10561adantr 483 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)
1064, 50grpcl 18105 . . . . . . . . . . . . . . . . . . . 20 ((𝐺 ∈ Grp ∧ 𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
107103, 104, 105, 106syl3anc 1367 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋)
108 eceq1 8321 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) → [𝑥](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
109108, 6, 97fvmpt3i 6768 . . . . . . . . . . . . . . . . . . 19 ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
110107, 109syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
11143ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐺 ~QG 𝑌) Er 𝑋)
1124, 50, 76, 49grplinv 18146 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
113103, 104, 112syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)𝑎) = (0g𝐺))
114113oveq1d 7165 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
1154, 49grpinvcl 18145 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝐺 ∈ Grp ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
116103, 104, 115syl2anc 586 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((invg𝐺)‘𝑎) ∈ 𝑋)
1174, 50grpass 18106 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑎) ∈ 𝑋𝑎𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋)) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
118103, 116, 104, 105, 117syl13anc 1368 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((((invg𝐺)‘𝑎)(+g𝐺)𝑎)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))))
1194, 50, 76grplid 18127 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐺 ∈ Grp ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
120103, 105, 119syl2anc 586 . . . . . . . . . . . . . . . . . . . . . 22 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((0g𝐺)(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
121114, 118, 1203eqtr3d 2864 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = (((invg𝐺)‘𝑦)(+g𝐺)𝑧))
122 simplr 767 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)
123121, 122eqeltrd 2913 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)
12448ad2antrr 724 . . . . . . . . . . . . . . . . . . . . 21 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑌𝑋)
1254, 49, 50, 41eqgval 18323 . . . . . . . . . . . . . . . . . . . . 21 ((𝐺 ∈ Grp ∧ 𝑌𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
126103, 124, 125syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ↔ (𝑎𝑋 ∧ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑋 ∧ (((invg𝐺)‘𝑎)(+g𝐺)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ 𝑌)))
127104, 107, 123, 126mpbir3and 1338 . . . . . . . . . . . . . . . . . . 19 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → 𝑎(𝐺 ~QG 𝑌)(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)))
128111, 127erthi 8334 . . . . . . . . . . . . . . . . . 18 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → [𝑎](𝐺 ~QG 𝑌) = [(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))](𝐺 ~QG 𝑌))
129110, 128eqtr4d 2859 . . . . . . . . . . . . . . . . 17 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → (𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) = [𝑎](𝐺 ~QG 𝑌))
130129eleq1d 2897 . . . . . . . . . . . . . . . 16 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝐹‘(𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) ∈ (𝐹𝑆) ↔ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
131102, 130sylibd 241 . . . . . . . . . . . . . . 15 ((((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) ∧ 𝑎𝑋) → ((𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆 → [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)))
132131ss2rabdv 4052 . . . . . . . . . . . . . 14 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → {𝑎𝑋 ∣ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧)) ∈ 𝑆} ⊆ {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)})
133 eceq1 8321 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑎 → [𝑥](𝐺 ~QG 𝑌) = [𝑎](𝐺 ~QG 𝑌))
134133cbvmptv 5162 . . . . . . . . . . . . . . . 16 (𝑥𝑋 ↦ [𝑥](𝐺 ~QG 𝑌)) = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
1356, 134eqtri 2844 . . . . . . . . . . . . . . 15 𝐹 = (𝑎𝑋 ↦ [𝑎](𝐺 ~QG 𝑌))
136135mptpreima 6087 . . . . . . . . . . . . . 14 (𝐹 “ (𝐹𝑆)) = {𝑎𝑋 ∣ [𝑎](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)}
137132, 93, 1363sstr4g 4012 . . . . . . . . . . . . 13 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))
138 eleq2 2901 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑦𝑢𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆)))
139 sseq1 3992 . . . . . . . . . . . . . . 15 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → (𝑢 ⊆ (𝐹 “ (𝐹𝑆)) ↔ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆))))
140138, 139anbi12d 632 . . . . . . . . . . . . . 14 (𝑢 = ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) → ((𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))) ↔ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))))
141140rspcev 3623 . . . . . . . . . . . . 13 ((((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∈ 𝐽 ∧ (𝑦 ∈ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ∧ ((𝑎𝑋 ↦ (𝑎(+g𝐺)(((invg𝐺)‘𝑦)(+g𝐺)𝑧))) “ 𝑆) ⊆ (𝐹 “ (𝐹𝑆)))) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
14272, 95, 137, 141syl12anc 834 . . . . . . . . . . . 12 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
1431423ad2antr3 1186 . . . . . . . . . . 11 (((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) ∧ (𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
144143ex 415 . . . . . . . . . 10 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝑦𝑋𝑧𝑋 ∧ (((invg𝐺)‘𝑦)(+g𝐺)𝑧) ∈ 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14553, 144sylbid 242 . . . . . . . . 9 ((((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) ∧ 𝑧𝑆) → ((𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
146145rexlimdva 3284 . . . . . . . 8 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → (∃𝑧𝑆 (𝐹𝑧) = [𝑦](𝐺 ~QG 𝑌) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14721, 146syl5 34 . . . . . . 7 (((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) ∧ 𝑦𝑋) → ([𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
148147expimpd 456 . . . . . 6 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝑦𝑋 ∧ [𝑦](𝐺 ~QG 𝑌) ∈ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
14918, 148syl5bi 244 . . . . 5 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝑦 ∈ (𝐹 “ (𝐹𝑆)) → ∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
150149ralrimiv 3181 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆))))
151 topontop 21515 . . . . 5 (𝐽 ∈ (TopOn‘𝑋) → 𝐽 ∈ Top)
152 eltop2 21577 . . . . 5 (𝐽 ∈ Top → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
15324, 151, 1523syl 18 . . . 4 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹 “ (𝐹𝑆)) ∈ 𝐽 ↔ ∀𝑦 ∈ (𝐹 “ (𝐹𝑆))∃𝑢𝐽 (𝑦𝑢𝑢 ⊆ (𝐹 “ (𝐹𝑆)))))
154150, 153mpbird 259 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹 “ (𝐹𝑆)) ∈ 𝐽)
155 elqtop3 22305 . . . 4 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐹:𝑋onto→(𝑋 / (𝐺 ~QG 𝑌))) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15624, 10, 155syl2anc 586 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → ((𝐹𝑆) ∈ (𝐽 qTop 𝐹) ↔ ((𝐹𝑆) ⊆ (𝑋 / (𝐺 ~QG 𝑌)) ∧ (𝐹 “ (𝐹𝑆)) ∈ 𝐽)))
15713, 154, 156mpbir2and 711 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ (𝐽 qTop 𝐹))
1583, 5, 6, 8, 9qusval 16809 . . 3 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐻 = (𝐹s 𝐺))
159 qustgpopn.k . . 3 𝐾 = (TopOpen‘𝐻)
160158, 5, 10, 9, 22, 159imastopn 22322 . 2 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → 𝐾 = (𝐽 qTop 𝐹))
161157, 160eleqtrrd 2916 1 ((𝐺 ∈ TopGrp ∧ 𝑌 ∈ (NrmSGrp‘𝐺) ∧ 𝑆𝐽) → (𝐹𝑆) ∈ 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  wrex 3139  {crab 3142  Vcvv 3495  wss 3936   class class class wbr 5059  cmpt 5139  ccnv 5549  ran crn 5551  cima 5553  Fun wfun 6344   Fn wfn 6345  ontowfo 6348  cfv 6350  (class class class)co 7150   Er wer 8280  [cec 8281   / cqs 8282  Basecbs 16477  +gcplusg 16559  TopOpenctopn 16689  0gc0g 16707   qTop cqtop 16770   /s cqus 16772  Grpcgrp 18097  invgcminusg 18098  SubGrpcsubg 18267  NrmSGrpcnsg 18268   ~QG cqg 18269  oppgcoppg 18467  Topctop 21495  TopOnctopon 21512   Cn ccn 21826  Homeochmeo 22355  TopGrpctgp 22673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-rep 5183  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3497  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4833  df-int 4870  df-iun 4914  df-br 5060  df-opab 5122  df-mpt 5140  df-tr 5166  df-id 5455  df-eprel 5460  df-po 5469  df-so 5470  df-fr 5509  df-we 5511  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-ima 5563  df-pred 6143  df-ord 6189  df-on 6190  df-lim 6191  df-suc 6192  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-f1 6355  df-fo 6356  df-f1o 6357  df-fv 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-ec 8285  df-qs 8289  df-map 8402  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-dec 12093  df-uz 12238  df-fz 12887  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-ip 16577  df-tset 16578  df-ple 16579  df-ds 16581  df-rest 16690  df-topn 16691  df-0g 16709  df-topgen 16711  df-qtop 16774  df-imas 16775  df-qus 16776  df-plusf 17845  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-subg 18270  df-nsg 18271  df-eqg 18272  df-oppg 18468  df-top 21496  df-topon 21513  df-topsp 21535  df-bases 21548  df-cn 21829  df-cnp 21830  df-tx 22164  df-hmeo 22357  df-tmd 22674  df-tgp 22675
This theorem is referenced by:  qustgplem  22723
  Copyright terms: Public domain W3C validator