MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r0sep Structured version   Visualization version   GIF version

Theorem r0sep 21464
Description: The separation property of an R0 space. (Contributed by Mario Carneiro, 25-Aug-2015.)
Assertion
Ref Expression
r0sep (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
Distinct variable groups:   𝐴,𝑜   𝐵,𝑜   𝑜,𝐽   𝑜,𝑋

Proof of Theorem r0sep
Dummy variables 𝑥 𝑦 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . . 4 (𝑧𝑋 ↦ {𝑤𝐽𝑧𝑤}) = (𝑧𝑋 ↦ {𝑤𝐽𝑧𝑤})
21isr0 21453 . . 3 (𝐽 ∈ (TopOn‘𝑋) → ((KQ‘𝐽) ∈ Fre ↔ ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜))))
32biimpa 501 . 2 ((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) → ∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)))
4 eleq1 2686 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑜𝐴𝑜))
54imbi1d 331 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
65ralbidv 2980 . . . 4 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
74bibi1d 333 . . . . 5 (𝑥 = 𝐴 → ((𝑥𝑜𝑦𝑜) ↔ (𝐴𝑜𝑦𝑜)))
87ralbidv 2980 . . . 4 (𝑥 = 𝐴 → (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)))
96, 8imbi12d 334 . . 3 (𝑥 = 𝐴 → ((∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)) ↔ (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → ∀𝑜𝐽 (𝐴𝑜𝑦𝑜))))
10 eleq1 2686 . . . . . 6 (𝑦 = 𝐵 → (𝑦𝑜𝐵𝑜))
1110imbi2d 330 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1211ralbidv 2980 . . . 4 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
1310bibi2d 332 . . . . 5 (𝑦 = 𝐵 → ((𝐴𝑜𝑦𝑜) ↔ (𝐴𝑜𝐵𝑜)))
1413ralbidv 2980 . . . 4 (𝑦 = 𝐵 → (∀𝑜𝐽 (𝐴𝑜𝑦𝑜) ↔ ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
1512, 14imbi12d 334 . . 3 (𝑦 = 𝐵 → ((∀𝑜𝐽 (𝐴𝑜𝑦𝑜) → ∀𝑜𝐽 (𝐴𝑜𝑦𝑜)) ↔ (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))))
169, 15rspc2v 3307 . 2 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 (∀𝑜𝐽 (𝑥𝑜𝑦𝑜) → ∀𝑜𝐽 (𝑥𝑜𝑦𝑜)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜))))
173, 16mpan9 486 1 (((𝐽 ∈ (TopOn‘𝑋) ∧ (KQ‘𝐽) ∈ Fre) ∧ (𝐴𝑋𝐵𝑋)) → (∀𝑜𝐽 (𝐴𝑜𝐵𝑜) → ∀𝑜𝐽 (𝐴𝑜𝐵𝑜)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  cmpt 4675  cfv 5849  TopOnctopon 20637  Frect1 21024  KQckq 21409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4733  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-id 4991  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-map 7807  df-topgen 16028  df-qtop 16091  df-top 20621  df-topon 20638  df-cld 20736  df-cn 20944  df-t1 21031  df-kq 21410
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator