Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-3 Structured version   Visualization version   GIF version

Theorem r19.26-3 3095
 Description: Version of r19.26 3093 with three quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 1056 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
21ralbii 3009 . 2 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ ∀𝑥𝐴 ((𝜑𝜓) ∧ 𝜒))
3 r19.26 3093 . 2 (∀𝑥𝐴 ((𝜑𝜓) ∧ 𝜒) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒))
4 r19.26 3093 . . . 4 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
54anbi1i 731 . . 3 ((∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒) ↔ ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ ∀𝑥𝐴 𝜒))
6 df-3an 1056 . . 3 ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒) ↔ ((∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓) ∧ ∀𝑥𝐴 𝜒))
75, 6bitr4i 267 . 2 ((∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
82, 3, 73bitri 286 1 (∀𝑥𝐴 (𝜑𝜓𝜒) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓 ∧ ∀𝑥𝐴 𝜒))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∧ w3a 1054  ∀wral 2941 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777 This theorem depends on definitions:  df-bi 197  df-an 385  df-3an 1056  df-ral 2946 This theorem is referenced by:  sgrp2rid2ex  17461  axeuclid  25888  axcontlem8  25896  stoweidlem60  40595
 Copyright terms: Public domain W3C validator