MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.27v Structured version   Visualization version   GIF version

Theorem r19.27v 3208
Description: Restricted quantitifer version of one direction of 19.27 2242. (The other direction holds when 𝐴 is nonempty, see r19.27zv 4215.) (Contributed by NM, 3-Jun-2004.) (Proof shortened by Andrew Salmon, 30-May-2011.)
Assertion
Ref Expression
r19.27v ((∀𝑥𝐴 𝜑𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Distinct variable group:   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐴(𝑥)

Proof of Theorem r19.27v
StepHypRef Expression
1 ax-1 6 . . . 4 (𝜓 → (𝑥𝐴𝜓))
21ralrimiv 3103 . . 3 (𝜓 → ∀𝑥𝐴 𝜓)
32anim2i 594 . 2 ((∀𝑥𝐴 𝜑𝜓) → (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
4 r19.26 3202 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 ∧ ∀𝑥𝐴 𝜓))
53, 4sylibr 224 1 ((∀𝑥𝐴 𝜑𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2139  wral 3050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988
This theorem depends on definitions:  df-bi 197  df-an 385  df-ral 3055
This theorem is referenced by:  r19.28v  3209  txlm  21653  tx1stc  21655  spanuni  28712
  Copyright terms: Public domain W3C validator