MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29d2r Structured version   Visualization version   GIF version

Theorem r19.29d2r 3072
Description: Theorem 19.29 of [Margaris] p. 90 with two restricted quantifiers, deduction version. (Contributed by Thierry Arnoux, 30-Jan-2017.)
Hypotheses
Ref Expression
r19.29d2r.1 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
r19.29d2r.2 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
Assertion
Ref Expression
r19.29d2r (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))

Proof of Theorem r19.29d2r
StepHypRef Expression
1 r19.29d2r.1 . . 3 (𝜑 → ∀𝑥𝐴𝑦𝐵 𝜓)
2 r19.29d2r.2 . . 3 (𝜑 → ∃𝑥𝐴𝑦𝐵 𝜒)
3 r19.29 3065 . . 3 ((∀𝑥𝐴𝑦𝐵 𝜓 ∧ ∃𝑥𝐴𝑦𝐵 𝜒) → ∃𝑥𝐴 (∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒))
41, 2, 3syl2anc 692 . 2 (𝜑 → ∃𝑥𝐴 (∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒))
5 r19.29 3065 . . 3 ((∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒) → ∃𝑦𝐵 (𝜓𝜒))
65reximi 3005 . 2 (∃𝑥𝐴 (∀𝑦𝐵 𝜓 ∧ ∃𝑦𝐵 𝜒) → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
74, 6syl 17 1 (𝜑 → ∃𝑥𝐴𝑦𝐵 (𝜓𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wral 2907  wrex 2908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1702  df-ral 2912  df-rex 2913
This theorem is referenced by:  r19.29vva  3073  ucnima  21995  tgisline  25422  rnmpt2ss  29316  xrofsup  29377  icoreresf  32832
  Copyright terms: Public domain W3C validator