MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.37zv Structured version   Visualization version   GIF version

Theorem r19.37zv 4100
Description: Restricted quantifier version of Theorem 19.37 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by Paul Chapman, 8-Oct-2007.)
Assertion
Ref Expression
r19.37zv (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃𝑥𝐴 𝜓)))
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥
Allowed substitution hint:   𝜓(𝑥)

Proof of Theorem r19.37zv
StepHypRef Expression
1 r19.3rzv 4097 . . 3 (𝐴 ≠ ∅ → (𝜑 ↔ ∀𝑥𝐴 𝜑))
21imbi1d 330 . 2 (𝐴 ≠ ∅ → ((𝜑 → ∃𝑥𝐴 𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓)))
3 r19.35 3113 . 2 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
42, 3syl6rbbr 279 1 (𝐴 ≠ ∅ → (∃𝑥𝐴 (𝜑𝜓) ↔ (𝜑 → ∃𝑥𝐴 𝜓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wne 2823  wral 2941  wrex 2942  c0 3948
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-v 3233  df-dif 3610  df-nul 3949
This theorem is referenced by:  ishlat3N  34959  hlsupr2  34991
  Copyright terms: Public domain W3C validator