MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1ord3g Structured version   Visualization version   GIF version

Theorem r1ord3g 9196
Description: Ordering relation for the cumulative hierarchy of sets. Part of Theorem 3.3(i) of [BellMachover] p. 478. (Contributed by NM, 22-Sep-2003.)
Assertion
Ref Expression
r1ord3g ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))

Proof of Theorem r1ord3g
StepHypRef Expression
1 r1funlim 9183 . . . . . 6 (Fun 𝑅1 ∧ Lim dom 𝑅1)
21simpri 486 . . . . 5 Lim dom 𝑅1
3 limord 6243 . . . . 5 (Lim dom 𝑅1 → Ord dom 𝑅1)
4 ordsson 7493 . . . . 5 (Ord dom 𝑅1 → dom 𝑅1 ⊆ On)
52, 3, 4mp2b 10 . . . 4 dom 𝑅1 ⊆ On
65sseli 3960 . . 3 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
75sseli 3960 . . 3 (𝐵 ∈ dom 𝑅1𝐵 ∈ On)
8 onsseleq 6225 . . 3 ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
96, 7, 8syl2an 595 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 ↔ (𝐴𝐵𝐴 = 𝐵)))
10 r1tr 9193 . . . 4 Tr (𝑅1𝐵)
11 r1ordg 9195 . . . . 5 (𝐵 ∈ dom 𝑅1 → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
1211adantl 482 . . . 4 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ∈ (𝑅1𝐵)))
13 trss 5172 . . . 4 (Tr (𝑅1𝐵) → ((𝑅1𝐴) ∈ (𝑅1𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
1410, 12, 13mpsylsyld 69 . . 3 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
15 fveq2 6663 . . . . 5 (𝐴 = 𝐵 → (𝑅1𝐴) = (𝑅1𝐵))
16 eqimss 4020 . . . . 5 ((𝑅1𝐴) = (𝑅1𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵))
1715, 16syl 17 . . . 4 (𝐴 = 𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵))
1817a1i 11 . . 3 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴 = 𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
1914, 18jaod 853 . 2 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → ((𝐴𝐵𝐴 = 𝐵) → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
209, 19sylbid 241 1 ((𝐴 ∈ dom 𝑅1𝐵 ∈ dom 𝑅1) → (𝐴𝐵 → (𝑅1𝐴) ⊆ (𝑅1𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wss 3933  Tr wtr 5163  dom cdm 5548  Ord word 6183  Oncon0 6184  Lim wlim 6185  Fun wfun 6342  cfv 6348  𝑅1cr1 9179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-r1 9181
This theorem is referenced by:  r1ord3  9199  r1val1  9203  rankr1ag  9219  unwf  9227  rankelb  9241  rankonidlem  9245
  Copyright terms: Public domain W3C validator