Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1rankidb Structured version   Visualization version   GIF version

Theorem r1rankidb 8627
 Description: Any set is a subset of the hierarchy of its rank. (Contributed by Mario Carneiro, 3-Jun-2013.) (Revised by Mario Carneiro, 17-Nov-2014.)
Assertion
Ref Expression
r1rankidb (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))

Proof of Theorem r1rankidb
StepHypRef Expression
1 ssid 3609 . 2 (rank‘𝐴) ⊆ (rank‘𝐴)
2 rankdmr1 8624 . . 3 (rank‘𝐴) ∈ dom 𝑅1
3 rankr1bg 8626 . . 3 ((𝐴 (𝑅1 “ On) ∧ (rank‘𝐴) ∈ dom 𝑅1) → (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ↔ (rank‘𝐴) ⊆ (rank‘𝐴)))
42, 3mpan2 706 . 2 (𝐴 (𝑅1 “ On) → (𝐴 ⊆ (𝑅1‘(rank‘𝐴)) ↔ (rank‘𝐴) ⊆ (rank‘𝐴)))
51, 4mpbiri 248 1 (𝐴 (𝑅1 “ On) → 𝐴 ⊆ (𝑅1‘(rank‘𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∈ wcel 1987   ⊆ wss 3560  ∪ cuni 4409  dom cdm 5084   “ cima 5087  Oncon0 5692  ‘cfv 5857  𝑅1cr1 8585  rankcrnk 8586 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-om 7028  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-r1 8587  df-rank 8588 This theorem is referenced by:  pwwf  8630  unwf  8633  rankpwi  8646  rankelb  8647  rankssb  8671  r1rankid  8682  tcrank  8707
 Copyright terms: Public domain W3C validator