MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Structured version   Visualization version   GIF version

Theorem r1tskina 9564
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))

Proof of Theorem r1tskina
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ne 2791 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 simplr 791 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ∈ Tarski)
3 simpll 789 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
4 onwf 8653 . . . . . . . . . . . . . . . 16 On ⊆ (𝑅1 “ On)
54sseli 3584 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → 𝐴 (𝑅1 “ On))
6 eqid 2621 . . . . . . . . . . . . . . . 16 (rank‘𝐴) = (rank‘𝐴)
7 rankr1c 8644 . . . . . . . . . . . . . . . 16 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))))
86, 7mpbii 223 . . . . . . . . . . . . . . 15 (𝐴 (𝑅1 “ On) → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
95, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
109simpld 475 . . . . . . . . . . . . 13 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
11 r1fnon 8590 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
12 fndm 5958 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
1311, 12ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
1413eleq2i 2690 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
15 rankonid 8652 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1614, 15bitr3i 266 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ (rank‘𝐴) = 𝐴)
17 fveq2 6158 . . . . . . . . . . . . . 14 ((rank‘𝐴) = 𝐴 → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1816, 17sylbi 207 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1910, 18neleqtrd 2719 . . . . . . . . . . . 12 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1𝐴))
2019adantl 482 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ (𝑅1𝐴))
21 onssr1 8654 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2214, 21sylbir 225 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ⊆ (𝑅1𝐴))
23 tsken 9536 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ⊆ (𝑅1𝐴)) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2422, 23sylan2 491 . . . . . . . . . . . 12 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2524ord 392 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (¬ 𝐴 ≈ (𝑅1𝐴) → 𝐴 ∈ (𝑅1𝐴)))
2620, 25mt3d 140 . . . . . . . . . 10 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → 𝐴 ≈ (𝑅1𝐴))
272, 3, 26syl2anc 692 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ (𝑅1𝐴))
28 carden2b 8753 . . . . . . . . 9 (𝐴 ≈ (𝑅1𝐴) → (card‘𝐴) = (card‘(𝑅1𝐴)))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = (card‘(𝑅1𝐴)))
30 simpl 473 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ∈ On)
31 simplr 791 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ∈ Tarski)
3222adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ⊆ (𝑅1𝐴))
3332sselda 3588 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
34 tsksdom 9538 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ≺ (𝑅1𝐴))
3531, 33, 34syl2anc 692 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ≺ (𝑅1𝐴))
36 simpll 789 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝐴 ∈ On)
3726ensymd 7967 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝑅1𝐴) ≈ 𝐴)
3831, 36, 37syl2anc 692 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ≈ 𝐴)
39 sdomentr 8054 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
4035, 38, 39syl2anc 692 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥𝐴)
4140ralrimiva 2962 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → ∀𝑥𝐴 𝑥𝐴)
42 iscard 8761 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
4330, 41, 42sylanbrc 697 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (card‘𝐴) = 𝐴)
4443adantr 481 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = 𝐴)
4529, 44eqtr3d 2657 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) = 𝐴)
46 r10 8591 . . . . . . . . . . 11 (𝑅1‘∅) = ∅
47 on0eln0 5749 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
4847biimpar 502 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
49 r1sdom 8597 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5048, 49syldan 487 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5146, 50syl5eqbrr 4659 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ≺ (𝑅1𝐴))
52 fvex 6168 . . . . . . . . . . 11 (𝑅1𝐴) ∈ V
53520sdom 8051 . . . . . . . . . 10 (∅ ≺ (𝑅1𝐴) ↔ (𝑅1𝐴) ≠ ∅)
5451, 53sylib 208 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
5554adantlr 750 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
56 tskcard 9563 . . . . . . . 8 (((𝑅1𝐴) ∈ Tarski ∧ (𝑅1𝐴) ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
572, 55, 56syl2anc 692 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
5845, 57eqeltrrd 2699 . . . . . 6 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Inacc)
5958ex 450 . . . . 5 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 ≠ ∅ → 𝐴 ∈ Inacc))
601, 59syl5bir 233 . . . 4 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (¬ 𝐴 = ∅ → 𝐴 ∈ Inacc))
6160orrd 393 . . 3 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))
6261ex 450 . 2 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
63 fveq2 6158 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
6463, 46syl6eq 2671 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
65 0tsk 9537 . . . 4 ∅ ∈ Tarski
6664, 65syl6eqel 2706 . . 3 (𝐴 = ∅ → (𝑅1𝐴) ∈ Tarski)
67 inatsk 9560 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
6866, 67jaoi 394 . 2 ((𝐴 = ∅ ∨ 𝐴 ∈ Inacc) → (𝑅1𝐴) ∈ Tarski)
6962, 68impbid1 215 1 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1480  wcel 1987  wne 2790  wral 2908  wss 3560  c0 3897   cuni 4409   class class class wbr 4623  dom cdm 5084  cima 5087  Oncon0 5692  suc csuc 5694   Fn wfn 5852  cfv 5857  cen 7912  csdm 7914  𝑅1cr1 8585  rankcrnk 8586  cardccrd 8721  Inacccina 9465  Tarskictsk 9530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4741  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-inf2 8498  ax-ac2 9245
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-int 4448  df-iun 4494  df-iin 4495  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-se 5044  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-isom 5866  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-1st 7128  df-2nd 7129  df-wrecs 7367  df-smo 7403  df-recs 7428  df-rdg 7466  df-1o 7520  df-2o 7521  df-oadd 7524  df-er 7702  df-map 7819  df-ixp 7869  df-en 7916  df-dom 7917  df-sdom 7918  df-fin 7919  df-oi 8375  df-har 8423  df-r1 8587  df-rank 8588  df-card 8725  df-aleph 8726  df-cf 8727  df-acn 8728  df-ac 8899  df-wina 9466  df-ina 9467  df-tsk 9531
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator