MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r1tskina Structured version   Visualization version   GIF version

Theorem r1tskina 10192
Description: There is a direct relationship between transitive Tarski classes and inaccessible cardinals: the Tarski classes that occur in the cumulative hierarchy are exactly at the strongly inaccessible cardinals. (Contributed by Mario Carneiro, 8-Jun-2013.)
Assertion
Ref Expression
r1tskina (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))

Proof of Theorem r1tskina
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-ne 3014 . . . . 5 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
2 simplr 765 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ∈ Tarski)
3 simpll 763 . . . . . . . . . 10 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
4 onwf 9247 . . . . . . . . . . . . . . . 16 On ⊆ (𝑅1 “ On)
54sseli 3960 . . . . . . . . . . . . . . 15 (𝐴 ∈ On → 𝐴 (𝑅1 “ On))
6 eqid 2818 . . . . . . . . . . . . . . . 16 (rank‘𝐴) = (rank‘𝐴)
7 rankr1c 9238 . . . . . . . . . . . . . . . 16 (𝐴 (𝑅1 “ On) → ((rank‘𝐴) = (rank‘𝐴) ↔ (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴)))))
86, 7mpbii 234 . . . . . . . . . . . . . . 15 (𝐴 (𝑅1 “ On) → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
95, 8syl 17 . . . . . . . . . . . . . 14 (𝐴 ∈ On → (¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)) ∧ 𝐴 ∈ (𝑅1‘suc (rank‘𝐴))))
109simpld 495 . . . . . . . . . . . . 13 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1‘(rank‘𝐴)))
11 r1fnon 9184 . . . . . . . . . . . . . . . . 17 𝑅1 Fn On
12 fndm 6448 . . . . . . . . . . . . . . . . 17 (𝑅1 Fn On → dom 𝑅1 = On)
1311, 12ax-mp 5 . . . . . . . . . . . . . . . 16 dom 𝑅1 = On
1413eleq2i 2901 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1𝐴 ∈ On)
15 rankonid 9246 . . . . . . . . . . . . . . 15 (𝐴 ∈ dom 𝑅1 ↔ (rank‘𝐴) = 𝐴)
1614, 15bitr3i 278 . . . . . . . . . . . . . 14 (𝐴 ∈ On ↔ (rank‘𝐴) = 𝐴)
17 fveq2 6663 . . . . . . . . . . . . . 14 ((rank‘𝐴) = 𝐴 → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1816, 17sylbi 218 . . . . . . . . . . . . 13 (𝐴 ∈ On → (𝑅1‘(rank‘𝐴)) = (𝑅1𝐴))
1910, 18neleqtrd 2931 . . . . . . . . . . . 12 (𝐴 ∈ On → ¬ 𝐴 ∈ (𝑅1𝐴))
2019adantl 482 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → ¬ 𝐴 ∈ (𝑅1𝐴))
21 onssr1 9248 . . . . . . . . . . . . . 14 (𝐴 ∈ dom 𝑅1𝐴 ⊆ (𝑅1𝐴))
2214, 21sylbir 236 . . . . . . . . . . . . 13 (𝐴 ∈ On → 𝐴 ⊆ (𝑅1𝐴))
23 tsken 10164 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ⊆ (𝑅1𝐴)) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2422, 23sylan2 592 . . . . . . . . . . . 12 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝐴 ≈ (𝑅1𝐴) ∨ 𝐴 ∈ (𝑅1𝐴)))
2524ord 858 . . . . . . . . . . 11 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (¬ 𝐴 ≈ (𝑅1𝐴) → 𝐴 ∈ (𝑅1𝐴)))
2620, 25mt3d 150 . . . . . . . . . 10 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → 𝐴 ≈ (𝑅1𝐴))
272, 3, 26syl2anc 584 . . . . . . . . 9 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ≈ (𝑅1𝐴))
28 carden2b 9384 . . . . . . . . 9 (𝐴 ≈ (𝑅1𝐴) → (card‘𝐴) = (card‘(𝑅1𝐴)))
2927, 28syl 17 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = (card‘(𝑅1𝐴)))
30 simpl 483 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ∈ On)
31 simplr 765 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ∈ Tarski)
3222adantr 481 . . . . . . . . . . . . . 14 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → 𝐴 ⊆ (𝑅1𝐴))
3332sselda 3964 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ∈ (𝑅1𝐴))
34 tsksdom 10166 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝑥 ∈ (𝑅1𝐴)) → 𝑥 ≺ (𝑅1𝐴))
3531, 33, 34syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥 ≺ (𝑅1𝐴))
36 simpll 763 . . . . . . . . . . . . 13 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝐴 ∈ On)
3726ensymd 8548 . . . . . . . . . . . . 13 (((𝑅1𝐴) ∈ Tarski ∧ 𝐴 ∈ On) → (𝑅1𝐴) ≈ 𝐴)
3831, 36, 37syl2anc 584 . . . . . . . . . . . 12 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → (𝑅1𝐴) ≈ 𝐴)
39 sdomentr 8639 . . . . . . . . . . . 12 ((𝑥 ≺ (𝑅1𝐴) ∧ (𝑅1𝐴) ≈ 𝐴) → 𝑥𝐴)
4035, 38, 39syl2anc 584 . . . . . . . . . . 11 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝑥𝐴) → 𝑥𝐴)
4140ralrimiva 3179 . . . . . . . . . 10 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → ∀𝑥𝐴 𝑥𝐴)
42 iscard 9392 . . . . . . . . . 10 ((card‘𝐴) = 𝐴 ↔ (𝐴 ∈ On ∧ ∀𝑥𝐴 𝑥𝐴))
4330, 41, 42sylanbrc 583 . . . . . . . . 9 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (card‘𝐴) = 𝐴)
4443adantr 481 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘𝐴) = 𝐴)
4529, 44eqtr3d 2855 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) = 𝐴)
46 r10 9185 . . . . . . . . . . 11 (𝑅1‘∅) = ∅
47 on0eln0 6239 . . . . . . . . . . . . 13 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
4847biimpar 478 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
49 r1sdom 9191 . . . . . . . . . . . 12 ((𝐴 ∈ On ∧ ∅ ∈ 𝐴) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5048, 49syldan 591 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1‘∅) ≺ (𝑅1𝐴))
5146, 50eqbrtrrid 5093 . . . . . . . . . 10 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → ∅ ≺ (𝑅1𝐴))
52 fvex 6676 . . . . . . . . . . 11 (𝑅1𝐴) ∈ V
53520sdom 8636 . . . . . . . . . 10 (∅ ≺ (𝑅1𝐴) ↔ (𝑅1𝐴) ≠ ∅)
5451, 53sylib 219 . . . . . . . . 9 ((𝐴 ∈ On ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
5554adantlr 711 . . . . . . . 8 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (𝑅1𝐴) ≠ ∅)
56 tskcard 10191 . . . . . . . 8 (((𝑅1𝐴) ∈ Tarski ∧ (𝑅1𝐴) ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
572, 55, 56syl2anc 584 . . . . . . 7 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → (card‘(𝑅1𝐴)) ∈ Inacc)
5845, 57eqeltrrd 2911 . . . . . 6 (((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ Inacc)
5958ex 413 . . . . 5 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 ≠ ∅ → 𝐴 ∈ Inacc))
601, 59syl5bir 244 . . . 4 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (¬ 𝐴 = ∅ → 𝐴 ∈ Inacc))
6160orrd 857 . . 3 ((𝐴 ∈ On ∧ (𝑅1𝐴) ∈ Tarski) → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc))
6261ex 413 . 2 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski → (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
63 fveq2 6663 . . . . 5 (𝐴 = ∅ → (𝑅1𝐴) = (𝑅1‘∅))
6463, 46syl6eq 2869 . . . 4 (𝐴 = ∅ → (𝑅1𝐴) = ∅)
65 0tsk 10165 . . . 4 ∅ ∈ Tarski
6664, 65syl6eqel 2918 . . 3 (𝐴 = ∅ → (𝑅1𝐴) ∈ Tarski)
67 inatsk 10188 . . 3 (𝐴 ∈ Inacc → (𝑅1𝐴) ∈ Tarski)
6866, 67jaoi 851 . 2 ((𝐴 = ∅ ∨ 𝐴 ∈ Inacc) → (𝑅1𝐴) ∈ Tarski)
6962, 68impbid1 226 1 (𝐴 ∈ On → ((𝑅1𝐴) ∈ Tarski ↔ (𝐴 = ∅ ∨ 𝐴 ∈ Inacc)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  wral 3135  wss 3933  c0 4288   cuni 4830   class class class wbr 5057  dom cdm 5548  cima 5551  Oncon0 6184  suc csuc 6186   Fn wfn 6343  cfv 6348  cen 8494  csdm 8496  𝑅1cr1 9179  rankcrnk 9180  cardccrd 9352  Inacccina 10093  Tarskictsk 10158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-inf2 9092  ax-ac2 9873
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-se 5508  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-isom 6357  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-smo 7972  df-recs 7997  df-rdg 8035  df-1o 8091  df-2o 8092  df-oadd 8095  df-er 8278  df-map 8397  df-ixp 8450  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-oi 8962  df-har 9010  df-r1 9181  df-rank 9182  df-card 9356  df-aleph 9357  df-cf 9358  df-acn 9359  df-ac 9530  df-wina 10094  df-ina 10095  df-tsk 10159
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator