MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r2allem Structured version   Visualization version   GIF version

Theorem r2allem 2932
Description: Lemma factoring out common proof steps of r2alf 2933 and r2al 2934. Introduced to reduce dependencies on axioms. (Contributed by Wolf Lammen, 9-Jan-2020.)
Hypothesis
Ref Expression
r2allem.1 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
Assertion
Ref Expression
r2allem (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))

Proof of Theorem r2allem
StepHypRef Expression
1 df-ral 2912 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
2 r2allem.1 . . . 4 (∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
3 impexp 462 . . . . 5 (((𝑥𝐴𝑦𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑦𝐵𝜑)))
43albii 1744 . . . 4 (∀𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑦(𝑥𝐴 → (𝑦𝐵𝜑)))
5 df-ral 2912 . . . . 5 (∀𝑦𝐵 𝜑 ↔ ∀𝑦(𝑦𝐵𝜑))
65imbi2i 326 . . . 4 ((𝑥𝐴 → ∀𝑦𝐵 𝜑) ↔ (𝑥𝐴 → ∀𝑦(𝑦𝐵𝜑)))
72, 4, 63bitr4i 292 . . 3 (∀𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ (𝑥𝐴 → ∀𝑦𝐵 𝜑))
87albii 1744 . 2 (∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑) ↔ ∀𝑥(𝑥𝐴 → ∀𝑦𝐵 𝜑))
91, 8bitr4i 267 1 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐵) → 𝜑))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wal 1478  wcel 1987  wral 2907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-an 386  df-ral 2912
This theorem is referenced by:  r2alf  2933  r2al  2934
  Copyright terms: Public domain W3C validator