Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rababg Structured version   Visualization version   GIF version

Theorem rababg 36795
Description: Condition when restricted class is equal to unrestricted class. (Contributed by RP, 13-Aug-2020.)
Assertion
Ref Expression
rababg (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})

Proof of Theorem rababg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ancrb 570 . . 3 ((𝜑𝑥𝐴) ↔ (𝜑 → (𝑥𝐴𝜑)))
21albii 1722 . 2 (∀𝑥(𝜑𝑥𝐴) ↔ ∀𝑥(𝜑 → (𝑥𝐴𝜑)))
3 nfv 1796 . . 3 𝑦(𝜑 → (𝑥𝐴𝜑))
4 nfsab1 2504 . . . 4 𝑥 𝑦 ∈ {𝑥𝜑}
5 nfrab1 3003 . . . . 5 𝑥{𝑥𝐴𝜑}
65nfcri 2649 . . . 4 𝑥 𝑦 ∈ {𝑥𝐴𝜑}
74, 6nfim 2051 . . 3 𝑥(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})
8 abid 2502 . . . . 5 (𝑥 ∈ {𝑥𝜑} ↔ 𝜑)
9 eleq1 2580 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝜑} ↔ 𝑦 ∈ {𝑥𝜑}))
108, 9syl5bbr 272 . . . 4 (𝑥 = 𝑦 → (𝜑𝑦 ∈ {𝑥𝜑}))
11 rabid 2999 . . . . 5 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
12 eleq1 2580 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑥𝐴𝜑} ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1311, 12syl5bbr 272 . . . 4 (𝑥 = 𝑦 → ((𝑥𝐴𝜑) ↔ 𝑦 ∈ {𝑥𝐴𝜑}))
1410, 13imbi12d 332 . . 3 (𝑥 = 𝑦 → ((𝜑 → (𝑥𝐴𝜑)) ↔ (𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑})))
153, 7, 14cbval 2162 . 2 (∀𝑥(𝜑 → (𝑥𝐴𝜑)) ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
16 eqss 3487 . . 3 ({𝑥𝐴𝜑} = {𝑥𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
17 rabssab 3556 . . . 4 {𝑥𝐴𝜑} ⊆ {𝑥𝜑}
1817biantrur 525 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ({𝑥𝐴𝜑} ⊆ {𝑥𝜑} ∧ {𝑥𝜑} ⊆ {𝑥𝐴𝜑}))
19 dfss2 3461 . . 3 ({𝑥𝜑} ⊆ {𝑥𝐴𝜑} ↔ ∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}))
2016, 18, 193bitr2ri 287 . 2 (∀𝑦(𝑦 ∈ {𝑥𝜑} → 𝑦 ∈ {𝑥𝐴𝜑}) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
212, 15, 203bitri 284 1 (∀𝑥(𝜑𝑥𝐴) ↔ {𝑥𝐴𝜑} = {𝑥𝜑})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  wal 1472   = wceq 1474  wcel 1938  {cab 2500  {crab 2804  wss 3444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-rab 2809  df-in 3451  df-ss 3458
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator