![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqf | Structured version Visualization version GIF version |
Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.) |
Ref | Expression |
---|---|
rabeqf.1 | ⊢ Ⅎ𝑥𝐴 |
rabeqf.2 | ⊢ Ⅎ𝑥𝐵 |
Ref | Expression |
---|---|
rabeqf | ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqf.1 | . . . 4 ⊢ Ⅎ𝑥𝐴 | |
2 | rabeqf.2 | . . . 4 ⊢ Ⅎ𝑥𝐵 | |
3 | 1, 2 | nfeq 2805 | . . 3 ⊢ Ⅎ𝑥 𝐴 = 𝐵 |
4 | eleq2 2719 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) | |
5 | 4 | anbi1d 741 | . . 3 ⊢ (𝐴 = 𝐵 → ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜑))) |
6 | 3, 5 | abbid 2769 | . 2 ⊢ (𝐴 = 𝐵 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)}) |
7 | df-rab 2950 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
8 | df-rab 2950 | . 2 ⊢ {𝑥 ∈ 𝐵 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐵 ∧ 𝜑)} | |
9 | 6, 7, 8 | 3eqtr4g 2710 | 1 ⊢ (𝐴 = 𝐵 → {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∈ 𝐵 ∣ 𝜑}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 {cab 2637 Ⅎwnfc 2780 {crab 2945 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 |
This theorem is referenced by: rabeqif 3222 rabeq 3223 fpwrelmapffs 29637 rabeq12f 34095 issmfdf 41267 smfpimltmpt 41276 smfpimltxrmpt 41288 smfpimgtmpt 41310 smfpimgtxrmpt 41313 smfsupmpt 41342 smfinfmpt 41346 |
Copyright terms: Public domain | W3C validator |