Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqf Structured version   Visualization version   GIF version

Theorem rabeqf 3221
 Description: Equality theorem for restricted class abstractions, with bound-variable hypotheses instead of distinct variable restrictions. (Contributed by NM, 7-Mar-2004.)
Hypotheses
Ref Expression
rabeqf.1 𝑥𝐴
rabeqf.2 𝑥𝐵
Assertion
Ref Expression
rabeqf (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})

Proof of Theorem rabeqf
StepHypRef Expression
1 rabeqf.1 . . . 4 𝑥𝐴
2 rabeqf.2 . . . 4 𝑥𝐵
31, 2nfeq 2805 . . 3 𝑥 𝐴 = 𝐵
4 eleq2 2719 . . . 4 (𝐴 = 𝐵 → (𝑥𝐴𝑥𝐵))
54anbi1d 741 . . 3 (𝐴 = 𝐵 → ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜑)))
63, 5abbid 2769 . 2 (𝐴 = 𝐵 → {𝑥 ∣ (𝑥𝐴𝜑)} = {𝑥 ∣ (𝑥𝐵𝜑)})
7 df-rab 2950 . 2 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
8 df-rab 2950 . 2 {𝑥𝐵𝜑} = {𝑥 ∣ (𝑥𝐵𝜑)}
96, 7, 83eqtr4g 2710 1 (𝐴 = 𝐵 → {𝑥𝐴𝜑} = {𝑥𝐵𝜑})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  {cab 2637  Ⅎwnfc 2780  {crab 2945 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950 This theorem is referenced by:  rabeqif  3222  rabeq  3223  fpwrelmapffs  29637  rabeq12f  34095  issmfdf  41267  smfpimltmpt  41276  smfpimltxrmpt  41288  smfpimgtmpt  41310  smfpimgtxrmpt  41313  smfsupmpt  41342  smfinfmpt  41346
 Copyright terms: Public domain W3C validator