MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabfi Structured version   Visualization version   GIF version

Theorem rabfi 8129
Description: A restricted class built from a finite set is finite. (Contributed by Thierry Arnoux, 14-Feb-2017.)
Assertion
Ref Expression
rabfi (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabfi
StepHypRef Expression
1 dfrab3 3878 . 2 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
2 infi 8128 . 2 (𝐴 ∈ Fin → (𝐴 ∩ {𝑥𝜑}) ∈ Fin)
31, 2syl5eqel 2702 1 (𝐴 ∈ Fin → {𝑥𝐴𝜑} ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1987  {cab 2607  {crab 2911  cin 3554  Fincfn 7899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-om 7013  df-er 7687  df-en 7900  df-fin 7903
This theorem is referenced by:  sygbasnfpfi  17853  finptfin  21231  lfinun  21238  usgrfilem  26107  nbusgrfi  26163  cusgrsizeindslem  26234  cusgrsizeinds  26235  vtxdgfival  26252  vtxdgfisnn0  26257  hashwwlksnext  26678  wwlksnonfi  26685  rusgrnumwwlks  26736  clwwlknclwwlkdifnum  26741  konigsberglem5  26984  fusgreghash2wsp  27060  numclwwlkffin  27070  numclwwlk3lem  27096  numclwwlk4  27098  phpreu  33022  poimirlem25  33063  poimirlem26  33064  poimirlem27  33065  poimirlem28  33066  poimirlem31  33069  poimirlem32  33070  sstotbnd3  33204  hoidmvlelem2  40114
  Copyright terms: Public domain W3C validator