Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabfodom Structured version   Visualization version   GIF version

Theorem rabfodom 30260
Description: Domination relation for restricted abstract class builders, based on a surjective function. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Hypotheses
Ref Expression
rabfodom.1 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
rabfodom.2 (𝜑𝐴𝑉)
rabfodom.3 (𝜑𝐹:𝐴onto𝐵)
Assertion
Ref Expression
rabfodom (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝑉,𝑦   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem rabfodom
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 vex 3497 . . . . . 6 𝑎 ∈ V
21rabex 5227 . . . . 5 {𝑥𝑎𝜓} ∈ V
3 eqid 2821 . . . . . 6 (𝑥𝑎 ↦ (𝐹𝑥)) = (𝑥𝑎 ↦ (𝐹𝑥))
4 rabfodom.3 . . . . . . . . . . . 12 (𝜑𝐹:𝐴onto𝐵)
5 fof 6584 . . . . . . . . . . . 12 (𝐹:𝐴onto𝐵𝐹:𝐴𝐵)
64, 5syl 17 . . . . . . . . . . 11 (𝜑𝐹:𝐴𝐵)
76feqmptd 6727 . . . . . . . . . 10 (𝜑𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
87ad2antrr 724 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝐹 = (𝑥𝐴 ↦ (𝐹𝑥)))
98reseq1d 5846 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎))
10 elpwi 4550 . . . . . . . . . 10 (𝑎 ∈ 𝒫 𝐴𝑎𝐴)
1110ad2antlr 725 . . . . . . . . 9 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → 𝑎𝐴)
1211resmptd 5902 . . . . . . . 8 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝐴 ↦ (𝐹𝑥)) ↾ 𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
139, 12eqtrd 2856 . . . . . . 7 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)))
14 f1oeq1 6598 . . . . . . . 8 ((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) → ((𝐹𝑎):𝑎1-1-onto𝐵 ↔ (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵))
1514biimpa 479 . . . . . . 7 (((𝐹𝑎) = (𝑥𝑎 ↦ (𝐹𝑥)) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
1613, 15sylancom 590 . . . . . 6 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → (𝑥𝑎 ↦ (𝐹𝑥)):𝑎1-1-onto𝐵)
17 simp1ll 1232 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝜑)
18113ad2ant1 1129 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑎𝐴)
19 simp2 1133 . . . . . . . 8 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝑎)
2018, 19sseldd 3967 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑥𝐴)
21 simp3 1134 . . . . . . 7 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → 𝑦 = (𝐹𝑥))
22 rabfodom.1 . . . . . . 7 ((𝜑𝑥𝐴𝑦 = (𝐹𝑥)) → (𝜒𝜓))
2317, 20, 21, 22syl3anc 1367 . . . . . 6 ((((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) ∧ 𝑥𝑎𝑦 = (𝐹𝑥)) → (𝜒𝜓))
243, 16, 23f1oresrab 6883 . . . . 5 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒})
25 f1oeng 8522 . . . . 5 (({𝑥𝑎𝜓} ∈ V ∧ ((𝑥𝑎 ↦ (𝐹𝑥)) ↾ {𝑥𝑎𝜓}):{𝑥𝑎𝜓}–1-1-onto→{𝑦𝐵𝜒}) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
262, 24, 25sylancr 589 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≈ {𝑦𝐵𝜒})
2726ensymd 8554 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓})
28 rabfodom.2 . . . . . 6 (𝜑𝐴𝑉)
29 rabexg 5226 . . . . . 6 (𝐴𝑉 → {𝑥𝐴𝜓} ∈ V)
3028, 29syl 17 . . . . 5 (𝜑 → {𝑥𝐴𝜓} ∈ V)
3130ad2antrr 724 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝐴𝜓} ∈ V)
32 rabss2 4053 . . . . 5 (𝑎𝐴 → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
3311, 32syl 17 . . . 4 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓})
34 ssdomg 8549 . . . 4 ({𝑥𝐴𝜓} ∈ V → ({𝑥𝑎𝜓} ⊆ {𝑥𝐴𝜓} → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}))
3531, 33, 34sylc 65 . . 3 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓})
36 endomtr 8561 . . 3 (({𝑦𝐵𝜒} ≈ {𝑥𝑎𝜓} ∧ {𝑥𝑎𝜓} ≼ {𝑥𝐴𝜓}) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
3727, 35, 36syl2anc 586 . 2 (((𝜑𝑎 ∈ 𝒫 𝐴) ∧ (𝐹𝑎):𝑎1-1-onto𝐵) → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
38 foresf1o 30259 . . 3 ((𝐴𝑉𝐹:𝐴onto𝐵) → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
3928, 4, 38syl2anc 586 . 2 (𝜑 → ∃𝑎 ∈ 𝒫 𝐴(𝐹𝑎):𝑎1-1-onto𝐵)
4037, 39r19.29a 3289 1 (𝜑 → {𝑦𝐵𝜒} ≼ {𝑥𝐴𝜓})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wrex 3139  {crab 3142  Vcvv 3494  wss 3935  𝒫 cpw 4538   class class class wbr 5058  cmpt 5138  cres 5551  wf 6345  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  cen 8500  cdom 8501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-reg 9050  ax-inf2 9098  ax-ac2 9879
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-om 7575  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-r1 9187  df-rank 9188  df-card 9362  df-ac 9536
This theorem is referenced by:  locfinreflem  31099
  Copyright terms: Public domain W3C validator