Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabid2f Structured version   Visualization version   GIF version

Theorem rabid2f 3258
 Description: An "identity" law for restricted class abstraction. (Contributed by NM, 9-Oct-2003.) (Proof shortened by Andrew Salmon, 30-May-2011.) (Revised by Thierry Arnoux, 13-Mar-2017.)
Hypothesis
Ref Expression
rabid2f.1 𝑥𝐴
Assertion
Ref Expression
rabid2f (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)

Proof of Theorem rabid2f
StepHypRef Expression
1 rabid2f.1 . . . 4 𝑥𝐴
21abeq2f 2930 . . 3 (𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
3 pm4.71 665 . . . 4 ((𝑥𝐴𝜑) ↔ (𝑥𝐴 ↔ (𝑥𝐴𝜑)))
43albii 1896 . . 3 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐴 ↔ (𝑥𝐴𝜑)))
52, 4bitr4i 267 . 2 (𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)} ↔ ∀𝑥(𝑥𝐴𝜑))
6 df-rab 3059 . . 3 {𝑥𝐴𝜑} = {𝑥 ∣ (𝑥𝐴𝜑)}
76eqeq2i 2772 . 2 (𝐴 = {𝑥𝐴𝜑} ↔ 𝐴 = {𝑥 ∣ (𝑥𝐴𝜑)})
8 df-ral 3055 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
95, 7, 83bitr4i 292 1 (𝐴 = {𝑥𝐴𝜑} ↔ ∀𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383  ∀wal 1630   = wceq 1632   ∈ wcel 2139  {cab 2746  Ⅎwnfc 2889  ∀wral 3050  {crab 3054 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rab 3059 This theorem is referenced by:  funcnvmptOLD  29776  funcnvmpt  29777  dmmptdf2  39938
 Copyright terms: Public domain W3C validator