Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rabidim2 Structured version   Visualization version   GIF version

Theorem rabidim2 38755
Description: Membership in a restricted abstraction, implication. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Assertion
Ref Expression
rabidim2 (𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)

Proof of Theorem rabidim2
StepHypRef Expression
1 rabid 3111 . 2 (𝑥 ∈ {𝑥𝐴𝜑} ↔ (𝑥𝐴𝜑))
21simprbi 480 1 (𝑥 ∈ {𝑥𝐴𝜑} → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 1992  {crab 2916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-9 2001  ax-12 2049  ax-ext 2606
This theorem depends on definitions:  df-bi 197  df-an 386  df-tru 1483  df-ex 1702  df-sb 1883  df-clab 2613  df-cleq 2619  df-clel 2622  df-rab 2921
This theorem is referenced by:  infnsuprnmpt  38928  pimrecltpos  40213  pimiooltgt  40215  pimrecltneg  40227  smfaddlem1  40265  smflimlem2  40274  smfrec  40290  smfmullem4  40295  smfdiv  40298  smfsupxr  40316  smfinflem  40317  smflimsuplem7  40326  smflimsuplem8  40327
  Copyright terms: Public domain W3C validator