![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabn0OLD | Structured version Visualization version GIF version |
Description: Obsolete proof of rabn0 4093 as of 16-Jul-2021. (Contributed by NM, 29-Aug-1999.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rabn0OLD | ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abn0 4089 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ≠ ∅ ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rab 3051 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜑} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} | |
3 | 2 | neeq1i 2988 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜑)} ≠ ∅) |
4 | df-rex 3048 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 1, 3, 4 | 3bitr4i 292 | 1 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜑} ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∃wex 1845 ∈ wcel 2131 {cab 2738 ≠ wne 2924 ∃wrex 3043 {crab 3046 ∅c0 4050 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-rex 3048 df-rab 3051 df-v 3334 df-dif 3710 df-nul 4051 |
This theorem is referenced by: rabeq0OLD 4095 |
Copyright terms: Public domain | W3C validator |