Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabrsn Structured version   Visualization version   GIF version

Theorem rabrsn 4291
 Description: A restricted class abstraction restricted to a singleton is either the empty set or the singleton itself. (Contributed by Alexander van der Vekens, 22-Dec-2017.) (Proof shortened by AV, 21-Jul-2019.)
Assertion
Ref Expression
rabrsn (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑀(𝑥)

Proof of Theorem rabrsn
StepHypRef Expression
1 rabsnifsb 4289 . . 3 {𝑥 ∈ {𝐴} ∣ 𝜑} = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅)
21eqeq2i 2663 . 2 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} ↔ 𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅))
3 ifeqor 4165 . . . 4 (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅)
4 orcom 401 . . . 4 ((if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴} ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))
53, 4mpbi 220 . . 3 (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})
6 eqeq1 2655 . . . 4 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅))
7 eqeq1 2655 . . . 4 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = {𝐴} ↔ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴}))
86, 7orbi12d 746 . . 3 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → ((𝑀 = ∅ ∨ 𝑀 = {𝐴}) ↔ (if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = ∅ ∨ if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) = {𝐴})))
95, 8mpbiri 248 . 2 (𝑀 = if([𝐴 / 𝑥]𝜑, {𝐴}, ∅) → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
102, 9sylbi 207 1 (𝑀 = {𝑥 ∈ {𝐴} ∣ 𝜑} → (𝑀 = ∅ ∨ 𝑀 = {𝐴}))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∨ wo 382   = wceq 1523  {crab 2945  [wsbc 3468  ∅c0 3948  ifcif 4119  {csn 4210 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-nul 3949  df-if 4120  df-sn 4211 This theorem is referenced by:  hashrabrsn  13199  hashrabsn01  13200  hashrabsn1  13201  dvnprodlem3  40481
 Copyright terms: Public domain W3C validator