![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabsn | Structured version Visualization version GIF version |
Description: Condition where a restricted class abstraction is a singleton. (Contributed by NM, 28-May-2006.) |
Ref | Expression |
---|---|
rabsn | ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2791 | . . . . 5 ⊢ (𝑥 = 𝐵 → (𝑥 ∈ 𝐴 ↔ 𝐵 ∈ 𝐴)) | |
2 | 1 | pm5.32ri 673 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ (𝐵 ∈ 𝐴 ∧ 𝑥 = 𝐵)) |
3 | 2 | baib 982 | . . 3 ⊢ (𝐵 ∈ 𝐴 → ((𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵) ↔ 𝑥 = 𝐵)) |
4 | 3 | abbidv 2843 | . 2 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵)} = {𝑥 ∣ 𝑥 = 𝐵}) |
5 | df-rab 3023 | . 2 ⊢ {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝑥 = 𝐵)} | |
6 | df-sn 4286 | . 2 ⊢ {𝐵} = {𝑥 ∣ 𝑥 = 𝐵} | |
7 | 4, 5, 6 | 3eqtr4g 2783 | 1 ⊢ (𝐵 ∈ 𝐴 → {𝑥 ∈ 𝐴 ∣ 𝑥 = 𝐵} = {𝐵}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1596 ∈ wcel 2103 {cab 2710 {crab 3018 {csn 4285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-rab 3023 df-sn 4286 |
This theorem is referenced by: unisn3 4561 sylow3lem6 18168 lineunray 32481 pmapat 35469 dia0 36760 nzss 38935 lco0 42643 |
Copyright terms: Public domain | W3C validator |