Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabssnn0fi Structured version   Visualization version   GIF version

Theorem rabssnn0fi 12725
 Description: A subset of the nonnegative integers defined by a restricted class abstraction is finite if there is a nonnegative integer so that for all integers greater than this integer the condition of the class abstraction is not fulfilled. (Contributed by AV, 3-Oct-2019.)
Assertion
Ref Expression
rabssnn0fi ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
Distinct variable groups:   𝑥,𝑠   𝜑,𝑠
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem rabssnn0fi
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3666 . 2 {𝑥 ∈ ℕ0𝜑} ⊆ ℕ0
2 ssnn0fi 12724 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑})))
3 nnel 2902 . . . . . . . . . 10 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ 𝑦 ∈ {𝑥 ∈ ℕ0𝜑})
4 nfcv 2761 . . . . . . . . . . . 12 𝑥𝑦
5 nfcv 2761 . . . . . . . . . . . 12 𝑥0
6 nfsbc1v 3437 . . . . . . . . . . . . 13 𝑥[𝑦 / 𝑥] ¬ 𝜑
76nfn 1781 . . . . . . . . . . . 12 𝑥 ¬ [𝑦 / 𝑥] ¬ 𝜑
8 sbceq2a 3429 . . . . . . . . . . . . . 14 (𝑦 = 𝑥 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
98equcoms 1944 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ([𝑦 / 𝑥] ¬ 𝜑 ↔ ¬ 𝜑))
109con2bid 344 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (𝜑 ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
114, 5, 7, 10elrabf 3343 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ (𝑦 ∈ ℕ0 ∧ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1211baib 943 . . . . . . . . . 10 (𝑦 ∈ ℕ0 → (𝑦 ∈ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
133, 12syl5bb 272 . . . . . . . . 9 (𝑦 ∈ ℕ0 → (¬ 𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ ¬ [𝑦 / 𝑥] ¬ 𝜑))
1413con4bid 307 . . . . . . . 8 (𝑦 ∈ ℕ0 → (𝑦 ∉ {𝑥 ∈ ℕ0𝜑} ↔ [𝑦 / 𝑥] ¬ 𝜑))
1514imbi2d 330 . . . . . . 7 (𝑦 ∈ ℕ0 → ((𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)))
1615ralbiia 2973 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑))
17 nfv 1840 . . . . . . . 8 𝑥 𝑠 < 𝑦
1817, 6nfim 1822 . . . . . . 7 𝑥(𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑)
19 nfv 1840 . . . . . . 7 𝑦(𝑠 < 𝑥 → ¬ 𝜑)
20 breq2 4617 . . . . . . . 8 (𝑦 = 𝑥 → (𝑠 < 𝑦𝑠 < 𝑥))
2120, 8imbi12d 334 . . . . . . 7 (𝑦 = 𝑥 → ((𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ (𝑠 < 𝑥 → ¬ 𝜑)))
2218, 19, 21cbvral 3155 . . . . . 6 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦[𝑦 / 𝑥] ¬ 𝜑) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2316, 22bitri 264 . . . . 5 (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
2423a1i 11 . . . 4 (({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0𝑠 ∈ ℕ0) → (∀𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
2524rexbidva 3042 . . 3 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → (∃𝑠 ∈ ℕ0𝑦 ∈ ℕ0 (𝑠 < 𝑦𝑦 ∉ {𝑥 ∈ ℕ0𝜑}) ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
262, 25bitrd 268 . 2 ({𝑥 ∈ ℕ0𝜑} ⊆ ℕ0 → ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑)))
271, 26ax-mp 5 1 ({𝑥 ∈ ℕ0𝜑} ∈ Fin ↔ ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ¬ 𝜑))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 384   ∈ wcel 1987   ∉ wnel 2893  ∀wral 2907  ∃wrex 2908  {crab 2911  [wsbc 3417   ⊆ wss 3555   class class class wbr 4613  Fincfn 7899   < clt 10018  ℕ0cn0 11236 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-1o 7505  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-fin 7903  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269 This theorem is referenced by:  fsuppmapnn0ub  12735  mptnn0fsupp  12737  mptnn0fsuppr  12739  pmatcollpw2lem  20501
 Copyright terms: Public domain W3C validator