MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvle Structured version   Visualization version   GIF version

Theorem radcnvle 24095
Description: If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvle.x (𝜑𝑋 ∈ ℂ)
radcnvle.a (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvle (𝜑 → (abs‘𝑋) ≤ 𝑅)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < (abs‘𝑋))
2 iccssxr 12206 . . . . . . . 8 (0[,]+∞) ⊆ ℝ*
3 pser.g . . . . . . . . 9 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
4 radcnv.a . . . . . . . . 9 (𝜑𝐴:ℕ0⟶ℂ)
5 radcnv.r . . . . . . . . 9 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
63, 4, 5radcnvcl 24092 . . . . . . . 8 (𝜑𝑅 ∈ (0[,]+∞))
72, 6sseldi 3585 . . . . . . 7 (𝜑𝑅 ∈ ℝ*)
87adantr 481 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ*)
9 radcnvle.x . . . . . . . 8 (𝜑𝑋 ∈ ℂ)
109abscld 14117 . . . . . . 7 (𝜑 → (abs‘𝑋) ∈ ℝ)
1110adantr 481 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ)
12 0xr 10038 . . . . . . . . . . 11 0 ∈ ℝ*
13 pnfxr 10044 . . . . . . . . . . 11 +∞ ∈ ℝ*
14 elicc1 12169 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
1512, 13, 14mp2an 707 . . . . . . . . . 10 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
166, 15sylib 208 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
1716simp2d 1072 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
18 ge0gtmnf 11954 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
197, 17, 18syl2anc 692 . . . . . . 7 (𝜑 → -∞ < 𝑅)
2019adantr 481 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → -∞ < 𝑅)
21 ressxr 10035 . . . . . . . . . 10 ℝ ⊆ ℝ*
2221, 10sseldi 3585 . . . . . . . . 9 (𝜑 → (abs‘𝑋) ∈ ℝ*)
2322adantr 481 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ*)
24 xrltle 11934 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ (abs‘𝑋) ∈ ℝ*) → (𝑅 < (abs‘𝑋) → 𝑅 ≤ (abs‘𝑋)))
258, 23, 24syl2anc 692 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) → 𝑅 ≤ (abs‘𝑋)))
261, 25mpd 15 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ≤ (abs‘𝑋))
27 xrre 11951 . . . . . 6 (((𝑅 ∈ ℝ* ∧ (abs‘𝑋) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ (abs‘𝑋))) → 𝑅 ∈ ℝ)
288, 11, 20, 26, 27syl22anc 1324 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ)
29 avglt1 11222 . . . . 5 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
3028, 11, 29syl2anc 692 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
311, 30mpbid 222 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
32 ssrab2 3671 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
3332, 21sstri 3596 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
3428, 11readdcld 10021 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 + (abs‘𝑋)) ∈ ℝ)
3534rehalfcld 11231 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ)
364adantr 481 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝐴:ℕ0⟶ℂ)
3735recnd 10020 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℂ)
389adantr 481 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝑋 ∈ ℂ)
39 0red 9993 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 ∈ ℝ)
4017adantr 481 . . . . . . . . . . . 12 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ 𝑅)
4139, 28, 35, 40, 31lelttrd 10147 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 < ((𝑅 + (abs‘𝑋)) / 2))
4239, 35, 41ltled 10137 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ ((𝑅 + (abs‘𝑋)) / 2))
4335, 42absidd 14103 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) = ((𝑅 + (abs‘𝑋)) / 2))
44 avglt2 11223 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4528, 11, 44syl2anc 692 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
461, 45mpbid 222 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋))
4743, 46eqbrtrd 4640 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) < (abs‘𝑋))
48 radcnvle.a . . . . . . . . 9 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
4948adantr 481 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
503, 36, 37, 38, 47, 49radcnvlem3 24090 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ )
51 fveq2 6153 . . . . . . . . . 10 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (𝐺𝑦) = (𝐺‘((𝑅 + (abs‘𝑋)) / 2)))
5251seqeq3d 12757 . . . . . . . . 9 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → seq0( + , (𝐺𝑦)) = seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))))
5352eleq1d 2683 . . . . . . . 8 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (seq0( + , (𝐺𝑦)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
54 fveq2 6153 . . . . . . . . . . 11 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
5554seqeq3d 12757 . . . . . . . . . 10 (𝑟 = 𝑦 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑦)))
5655eleq1d 2683 . . . . . . . . 9 (𝑟 = 𝑦 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑦)) ∈ dom ⇝ ))
5756cbvrabv 3188 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑦 ∈ ℝ ∣ seq0( + , (𝐺𝑦)) ∈ dom ⇝ }
5853, 57elrab2 3352 . . . . . . 7 (((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ ∧ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
5935, 50, 58sylanbrc 697 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
60 supxrub 12105 . . . . . 6 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6133, 59, 60sylancr 694 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6261, 5syl6breqr 4660 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ 𝑅)
6335, 28lenltd 10135 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → (((𝑅 + (abs‘𝑋)) / 2) ≤ 𝑅 ↔ ¬ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
6462, 63mpbid 222 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → ¬ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
6531, 64pm2.65da 599 . 2 (𝜑 → ¬ 𝑅 < (abs‘𝑋))
66 xrlenlt 10055 . . 3 (((abs‘𝑋) ∈ ℝ*𝑅 ∈ ℝ*) → ((abs‘𝑋) ≤ 𝑅 ↔ ¬ 𝑅 < (abs‘𝑋)))
6722, 7, 66syl2anc 692 . 2 (𝜑 → ((abs‘𝑋) ≤ 𝑅 ↔ ¬ 𝑅 < (abs‘𝑋)))
6865, 67mpbird 247 1 (𝜑 → (abs‘𝑋) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {crab 2911  wss 3559   class class class wbr 4618  cmpt 4678  dom cdm 5079  wf 5848  cfv 5852  (class class class)co 6610  supcsup 8298  cc 9886  cr 9887  0cc0 9888   + caddc 9891   · cmul 9893  +∞cpnf 10023  -∞cmnf 10024  *cxr 10025   < clt 10026  cle 10027   / cdiv 10636  2c2 11022  0cn0 11244  [,]cicc 12128  seqcseq 12749  cexp 12808  abscabs 13916  cli 14157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359
This theorem is referenced by:  pserdvlem2  24103  abelthlem1  24106  logtayl  24323
  Copyright terms: Public domain W3C validator