MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvle Structured version   Visualization version   GIF version

Theorem radcnvle 25002
Description: If 𝑋 is a convergent point of the infinite series, then 𝑋 is within the closed disk of radius 𝑅 centered at zero. Or, by contraposition, the series diverges at any point strictly more than 𝑅 from the origin. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
radcnv.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvle.x (𝜑𝑋 ∈ ℂ)
radcnvle.a (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvle (𝜑 → (abs‘𝑋) ≤ 𝑅)
Distinct variable groups:   𝑥,𝑛,𝐴   𝐺,𝑟
Allowed substitution hints:   𝜑(𝑥,𝑛,𝑟)   𝐴(𝑟)   𝑅(𝑥,𝑛,𝑟)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛,𝑟)

Proof of Theorem radcnvle
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ressxr 10679 . . 3 ℝ ⊆ ℝ*
2 radcnvle.x . . . 4 (𝜑𝑋 ∈ ℂ)
32abscld 14790 . . 3 (𝜑 → (abs‘𝑋) ∈ ℝ)
41, 3sseldi 3964 . 2 (𝜑 → (abs‘𝑋) ∈ ℝ*)
5 iccssxr 12813 . . 3 (0[,]+∞) ⊆ ℝ*
6 pser.g . . . 4 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
7 radcnv.a . . . 4 (𝜑𝐴:ℕ0⟶ℂ)
8 radcnv.r . . . 4 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
96, 7, 8radcnvcl 24999 . . 3 (𝜑𝑅 ∈ (0[,]+∞))
105, 9sseldi 3964 . 2 (𝜑𝑅 ∈ ℝ*)
11 simpr 487 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < (abs‘𝑋))
1210adantr 483 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ*)
133adantr 483 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ)
14 0xr 10682 . . . . . . . . . . 11 0 ∈ ℝ*
15 pnfxr 10689 . . . . . . . . . . 11 +∞ ∈ ℝ*
16 elicc1 12776 . . . . . . . . . . 11 ((0 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞)))
1714, 15, 16mp2an 690 . . . . . . . . . 10 (𝑅 ∈ (0[,]+∞) ↔ (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
189, 17sylib 220 . . . . . . . . 9 (𝜑 → (𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅𝑅 ≤ +∞))
1918simp2d 1139 . . . . . . . 8 (𝜑 → 0 ≤ 𝑅)
20 ge0gtmnf 12559 . . . . . . . 8 ((𝑅 ∈ ℝ* ∧ 0 ≤ 𝑅) → -∞ < 𝑅)
2110, 19, 20syl2anc 586 . . . . . . 7 (𝜑 → -∞ < 𝑅)
2221adantr 483 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → -∞ < 𝑅)
234adantr 483 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘𝑋) ∈ ℝ*)
2412, 23, 11xrltled 12537 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ≤ (abs‘𝑋))
25 xrre 12556 . . . . . 6 (((𝑅 ∈ ℝ* ∧ (abs‘𝑋) ∈ ℝ) ∧ (-∞ < 𝑅𝑅 ≤ (abs‘𝑋))) → 𝑅 ∈ ℝ)
2612, 13, 22, 24, 25syl22anc 836 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 ∈ ℝ)
27 avglt1 11869 . . . . 5 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2826, 13, 27syl2anc 586 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2)))
2911, 28mpbid 234 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
3026, 13readdcld 10664 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 + (abs‘𝑋)) ∈ ℝ)
3130rehalfcld 11878 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ)
32 ssrab2 4055 . . . . . . 7 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ
3332, 1sstri 3975 . . . . . 6 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ*
347adantr 483 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝐴:ℕ0⟶ℂ)
3531recnd 10663 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ ℂ)
362adantr 483 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → 𝑋 ∈ ℂ)
37 0red 10638 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 ∈ ℝ)
3819adantr 483 . . . . . . . . . . . 12 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ 𝑅)
3937, 26, 31, 38, 29lelttrd 10792 . . . . . . . . . . 11 ((𝜑𝑅 < (abs‘𝑋)) → 0 < ((𝑅 + (abs‘𝑋)) / 2))
4037, 31, 39ltled 10782 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → 0 ≤ ((𝑅 + (abs‘𝑋)) / 2))
4131, 40absidd 14776 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) = ((𝑅 + (abs‘𝑋)) / 2))
42 avglt2 11870 . . . . . . . . . . 11 ((𝑅 ∈ ℝ ∧ (abs‘𝑋) ∈ ℝ) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4326, 13, 42syl2anc 586 . . . . . . . . . 10 ((𝜑𝑅 < (abs‘𝑋)) → (𝑅 < (abs‘𝑋) ↔ ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋)))
4411, 43mpbid 234 . . . . . . . . 9 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) < (abs‘𝑋))
4541, 44eqbrtrd 5080 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → (abs‘((𝑅 + (abs‘𝑋)) / 2)) < (abs‘𝑋))
46 radcnvle.a . . . . . . . . 9 (𝜑 → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
4746adantr 483 . . . . . . . 8 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺𝑋)) ∈ dom ⇝ )
486, 34, 35, 36, 45, 47radcnvlem3 24997 . . . . . . 7 ((𝜑𝑅 < (abs‘𝑋)) → seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ )
49 fveq2 6664 . . . . . . . . . 10 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (𝐺𝑦) = (𝐺‘((𝑅 + (abs‘𝑋)) / 2)))
5049seqeq3d 13371 . . . . . . . . 9 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → seq0( + , (𝐺𝑦)) = seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))))
5150eleq1d 2897 . . . . . . . 8 (𝑦 = ((𝑅 + (abs‘𝑋)) / 2) → (seq0( + , (𝐺𝑦)) ∈ dom ⇝ ↔ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
52 fveq2 6664 . . . . . . . . . . 11 (𝑟 = 𝑦 → (𝐺𝑟) = (𝐺𝑦))
5352seqeq3d 13371 . . . . . . . . . 10 (𝑟 = 𝑦 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑦)))
5453eleq1d 2897 . . . . . . . . 9 (𝑟 = 𝑦 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑦)) ∈ dom ⇝ ))
5554cbvrabv 3491 . . . . . . . 8 {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } = {𝑦 ∈ ℝ ∣ seq0( + , (𝐺𝑦)) ∈ dom ⇝ }
5651, 55elrab2 3682 . . . . . . 7 (((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ (((𝑅 + (abs‘𝑋)) / 2) ∈ ℝ ∧ seq0( + , (𝐺‘((𝑅 + (abs‘𝑋)) / 2))) ∈ dom ⇝ ))
5731, 48, 56sylanbrc 585 . . . . . 6 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
58 supxrub 12711 . . . . . 6 (({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ⊆ ℝ* ∧ ((𝑅 + (abs‘𝑋)) / 2) ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
5933, 57, 58sylancr 589 . . . . 5 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ))
6059, 8breqtrrdi 5100 . . . 4 ((𝜑𝑅 < (abs‘𝑋)) → ((𝑅 + (abs‘𝑋)) / 2) ≤ 𝑅)
6131, 26, 60lensymd 10785 . . 3 ((𝜑𝑅 < (abs‘𝑋)) → ¬ 𝑅 < ((𝑅 + (abs‘𝑋)) / 2))
6229, 61pm2.65da 815 . 2 (𝜑 → ¬ 𝑅 < (abs‘𝑋))
634, 10, 62xrnltled 10703 1 (𝜑 → (abs‘𝑋) ≤ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  wss 3935   class class class wbr 5058  cmpt 5138  dom cdm 5549  wf 6345  cfv 6349  (class class class)co 7150  supcsup 8898  cc 10529  cr 10530  0cc0 10531   + caddc 10534   · cmul 10536  +∞cpnf 10666  -∞cmnf 10667  *cxr 10668   < clt 10669  cle 10670   / cdiv 11291  2c2 11686  0cn0 11891  [,]cicc 12735  seqcseq 13363  cexp 13423  abscabs 14587  cli 14835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609  ax-addf 10610  ax-mulf 10611
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-pm 8403  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-inf 8901  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-ico 12738  df-icc 12739  df-fz 12887  df-fzo 13028  df-fl 13156  df-seq 13364  df-exp 13424  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-limsup 14822  df-clim 14839  df-rlim 14840  df-sum 15037
This theorem is referenced by:  pserdvlem2  25010  abelthlem1  25013  logtayl  25237
  Copyright terms: Public domain W3C validator