MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  radcnvlem2 Structured version   Visualization version   GIF version

Theorem radcnvlem2 24089
Description: Lemma for radcnvlt1 24093, radcnvle 24095. If 𝑋 is a point closer to zero than 𝑌 and the power series converges at 𝑌, then it converges absolutely at 𝑋. (Contributed by Mario Carneiro, 26-Feb-2015.)
Hypotheses
Ref Expression
pser.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnv.a (𝜑𝐴:ℕ0⟶ℂ)
psergf.x (𝜑𝑋 ∈ ℂ)
radcnvlem2.y (𝜑𝑌 ∈ ℂ)
radcnvlem2.a (𝜑 → (abs‘𝑋) < (abs‘𝑌))
radcnvlem2.c (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
Assertion
Ref Expression
radcnvlem2 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Distinct variable group:   𝑥,𝑛,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐺(𝑥,𝑛)   𝑋(𝑥,𝑛)   𝑌(𝑥,𝑛)

Proof of Theorem radcnvlem2
Dummy variables 𝑘 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0uz 11674 . 2 0 = (ℤ‘0)
2 1nn0 11260 . . 3 1 ∈ ℕ0
32a1i 11 . 2 (𝜑 → 1 ∈ ℕ0)
4 id 22 . . . . . 6 (𝑚 = 𝑘𝑚 = 𝑘)
5 fveq2 6153 . . . . . . 7 (𝑚 = 𝑘 → ((𝐺𝑋)‘𝑚) = ((𝐺𝑋)‘𝑘))
65fveq2d 6157 . . . . . 6 (𝑚 = 𝑘 → (abs‘((𝐺𝑋)‘𝑚)) = (abs‘((𝐺𝑋)‘𝑘)))
74, 6oveq12d 6628 . . . . 5 (𝑚 = 𝑘 → (𝑚 · (abs‘((𝐺𝑋)‘𝑚))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
8 eqid 2621 . . . . 5 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))
9 ovex 6638 . . . . 5 (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ V
107, 8, 9fvmpt 6244 . . . 4 (𝑘 ∈ ℕ0 → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
1110adantl 482 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
12 nn0re 11253 . . . . 5 (𝑘 ∈ ℕ0𝑘 ∈ ℝ)
1312adantl 482 . . . 4 ((𝜑𝑘 ∈ ℕ0) → 𝑘 ∈ ℝ)
14 pser.g . . . . . . 7 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
15 radcnv.a . . . . . . 7 (𝜑𝐴:ℕ0⟶ℂ)
16 psergf.x . . . . . . 7 (𝜑𝑋 ∈ ℂ)
1714, 15, 16psergf 24087 . . . . . 6 (𝜑 → (𝐺𝑋):ℕ0⟶ℂ)
1817ffvelrnda 6320 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → ((𝐺𝑋)‘𝑘) ∈ ℂ)
1918abscld 14117 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
2013, 19remulcld 10022 . . 3 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℝ)
2111, 20eqeltrd 2698 . 2 ((𝜑𝑘 ∈ ℕ0) → ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘) ∈ ℝ)
22 fvco3 6237 . . . 4 (((𝐺𝑋):ℕ0⟶ℂ ∧ 𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2317, 22sylan 488 . . 3 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) = (abs‘((𝐺𝑋)‘𝑘)))
2419recnd 10020 . . 3 ((𝜑𝑘 ∈ ℕ0) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℂ)
2523, 24eqeltrd 2698 . 2 ((𝜑𝑘 ∈ ℕ0) → ((abs ∘ (𝐺𝑋))‘𝑘) ∈ ℂ)
26 radcnvlem2.y . . 3 (𝜑𝑌 ∈ ℂ)
27 radcnvlem2.a . . 3 (𝜑 → (abs‘𝑋) < (abs‘𝑌))
28 radcnvlem2.c . . 3 (𝜑 → seq0( + , (𝐺𝑌)) ∈ dom ⇝ )
297cbvmptv 4715 . . 3 (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚)))) = (𝑘 ∈ ℕ0 ↦ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
3014, 15, 16, 26, 27, 28, 29radcnvlem1 24088 . 2 (𝜑 → seq0( + , (𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))) ∈ dom ⇝ )
31 1red 10007 . 2 (𝜑 → 1 ∈ ℝ)
32 1red 10007 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ∈ ℝ)
33 elnnuz 11676 . . . . . 6 (𝑘 ∈ ℕ ↔ 𝑘 ∈ (ℤ‘1))
34 nnnn0 11251 . . . . . 6 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
3533, 34sylbir 225 . . . . 5 (𝑘 ∈ (ℤ‘1) → 𝑘 ∈ ℕ0)
3635, 13sylan2 491 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 𝑘 ∈ ℝ)
3735, 19sylan2 491 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((𝐺𝑋)‘𝑘)) ∈ ℝ)
3818absge0d 14125 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
3935, 38sylan2 491 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 0 ≤ (abs‘((𝐺𝑋)‘𝑘)))
40 eluzle 11652 . . . . 5 (𝑘 ∈ (ℤ‘1) → 1 ≤ 𝑘)
4140adantl 482 . . . 4 ((𝜑𝑘 ∈ (ℤ‘1)) → 1 ≤ 𝑘)
4232, 36, 37, 39, 41lemul1ad 10915 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · (abs‘((𝐺𝑋)‘𝑘))) ≤ (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
43 absidm 14005 . . . . . 6 (((𝐺𝑋)‘𝑘) ∈ ℂ → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4418, 43syl 17 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘(abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4523fveq2d 6157 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (abs‘(abs‘((𝐺𝑋)‘𝑘))))
4624mulid2d 10010 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (abs‘((𝐺𝑋)‘𝑘))) = (abs‘((𝐺𝑋)‘𝑘)))
4744, 45, 463eqtr4d 2665 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4835, 47sylan2 491 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) = (1 · (abs‘((𝐺𝑋)‘𝑘))))
4911oveq2d 6626 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))))
5020recnd 10020 . . . . . 6 ((𝜑𝑘 ∈ ℕ0) → (𝑘 · (abs‘((𝐺𝑋)‘𝑘))) ∈ ℂ)
5150mulid2d 10010 . . . . 5 ((𝜑𝑘 ∈ ℕ0) → (1 · (𝑘 · (abs‘((𝐺𝑋)‘𝑘)))) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5249, 51eqtrd 2655 . . . 4 ((𝜑𝑘 ∈ ℕ0) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5335, 52sylan2 491 . . 3 ((𝜑𝑘 ∈ (ℤ‘1)) → (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)) = (𝑘 · (abs‘((𝐺𝑋)‘𝑘))))
5442, 48, 533brtr4d 4650 . 2 ((𝜑𝑘 ∈ (ℤ‘1)) → (abs‘((abs ∘ (𝐺𝑋))‘𝑘)) ≤ (1 · ((𝑚 ∈ ℕ0 ↦ (𝑚 · (abs‘((𝐺𝑋)‘𝑚))))‘𝑘)))
551, 3, 21, 25, 30, 31, 54cvgcmpce 14488 1 (𝜑 → seq0( + , (abs ∘ (𝐺𝑋))) ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987   class class class wbr 4618  cmpt 4678  dom cdm 5079  ccom 5083  wf 5848  cfv 5852  (class class class)co 6610  cc 9886  cr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026  cle 10027  cn 10972  0cn0 11244  cuz 11639  seqcseq 12749  cexp 12808  abscabs 13916  cli 14157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-pm 7812  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-fz 12277  df-fzo 12415  df-fl 12541  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359
This theorem is referenced by:  radcnvlem3  24090  radcnvlt1  24093
  Copyright terms: Public domain W3C validator