Users' Mathboxes Mathbox for Steve Rodriguez < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  radcnvrat Structured version   Visualization version   GIF version

Theorem radcnvrat 37331
Description: Let 𝐿 be the limit, if one exists, of the ratio (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) (as in the ratio test cvgdvgrat 37330) as 𝑘 increases. Then the radius of convergence of power series Σ𝑛 ∈ ℕ0((𝐴𝑛) · (𝑥𝑛)) is (1 / 𝐿) if 𝐿 is nonzero. Proof "The limit involved in the ratio test..." in https://en.wikipedia.org/wiki/Radius_of_convergence —a few lines that evidently hide quite an involved process to confirm. (Contributed by Steve Rodriguez, 8-Mar-2020.)
Hypotheses
Ref Expression
radcnvrat.g 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
radcnvrat.a (𝜑𝐴:ℕ0⟶ℂ)
radcnvrat.r 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
radcnvrat.rat 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
radcnvrat.z 𝑍 = (ℤ𝑀)
radcnvrat.m (𝜑𝑀 ∈ ℕ0)
radcnvrat.n0 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
radcnvrat.l (𝜑𝐷𝐿)
radcnvrat.ln0 (𝜑𝐿 ≠ 0)
Assertion
Ref Expression
radcnvrat (𝜑𝑅 = (1 / 𝐿))
Distinct variable groups:   𝑘,𝑛,𝑥,𝜑   𝐴,𝑛,𝑥   𝑘,𝐺,𝑛,𝑥   𝑘,𝑟,𝑥,𝐺   𝑘,𝐿,𝑥   𝑘,𝑍,𝑛   𝐷,𝑘   𝑘,𝑀
Allowed substitution hints:   𝜑(𝑟)   𝐴(𝑘,𝑟)   𝐷(𝑥,𝑛,𝑟)   𝑅(𝑥,𝑘,𝑛,𝑟)   𝐿(𝑛,𝑟)   𝑀(𝑥,𝑛,𝑟)   𝑍(𝑥,𝑟)

Proof of Theorem radcnvrat
StepHypRef Expression
1 radcnvrat.r . 2 𝑅 = sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < )
2 xrltso 11809 . . . 4 < Or ℝ*
32a1i 11 . . 3 (𝜑 → < Or ℝ*)
4 radcnvrat.z . . . . . 6 𝑍 = (ℤ𝑀)
5 radcnvrat.m . . . . . . 7 (𝜑𝑀 ∈ ℕ0)
65nn0zd 11312 . . . . . 6 (𝜑𝑀 ∈ ℤ)
74reseq2i 5301 . . . . . . 7 (𝐷𝑍) = (𝐷 ↾ (ℤ𝑀))
8 radcnvrat.l . . . . . . . 8 (𝜑𝐷𝐿)
9 radcnvrat.rat . . . . . . . . . 10 𝐷 = (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
10 nn0ex 11145 . . . . . . . . . . 11 0 ∈ V
1110mptex 6368 . . . . . . . . . 10 (𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ∈ V
129, 11eqeltri 2683 . . . . . . . . 9 𝐷 ∈ V
13 climres 14100 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝐷 ∈ V) → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
146, 12, 13sylancl 692 . . . . . . . 8 (𝜑 → ((𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿𝐷𝐿))
158, 14mpbird 245 . . . . . . 7 (𝜑 → (𝐷 ↾ (ℤ𝑀)) ⇝ 𝐿)
167, 15syl5eqbr 4612 . . . . . 6 (𝜑 → (𝐷𝑍) ⇝ 𝐿)
179reseq1i 5300 . . . . . . . . 9 (𝐷𝑍) = ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍)
18 eluznn0 11589 . . . . . . . . . . . . . 14 ((𝑀 ∈ ℕ0𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
195, 18sylan 486 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (ℤ𝑀)) → 𝑘 ∈ ℕ0)
2019ex 448 . . . . . . . . . . . 12 (𝜑 → (𝑘 ∈ (ℤ𝑀) → 𝑘 ∈ ℕ0))
2120ssrdv 3573 . . . . . . . . . . 11 (𝜑 → (ℤ𝑀) ⊆ ℕ0)
224, 21syl5eqss 3611 . . . . . . . . . 10 (𝜑𝑍 ⊆ ℕ0)
2322resmptd 5358 . . . . . . . . 9 (𝜑 → ((𝑘 ∈ ℕ0 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))) ↾ 𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
2417, 23syl5eq 2655 . . . . . . . 8 (𝜑 → (𝐷𝑍) = (𝑘𝑍 ↦ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘)))))
25 fvex 6098 . . . . . . . . 9 (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ V
2625a1i 11 . . . . . . . 8 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ V)
2724, 26fvmpt2d 6187 . . . . . . 7 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
284peano2uzs 11574 . . . . . . . . . 10 (𝑘𝑍 → (𝑘 + 1) ∈ 𝑍)
2922sselda 3567 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝑘 + 1) ∈ ℕ0)
30 radcnvrat.a . . . . . . . . . . . 12 (𝜑𝐴:ℕ0⟶ℂ)
3130ffvelrnda 6252 . . . . . . . . . . 11 ((𝜑 ∧ (𝑘 + 1) ∈ ℕ0) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3229, 31syldan 485 . . . . . . . . . 10 ((𝜑 ∧ (𝑘 + 1) ∈ 𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3328, 32sylan2 489 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
3422sselda 3567 . . . . . . . . . 10 ((𝜑𝑘𝑍) → 𝑘 ∈ ℕ0)
3530ffvelrnda 6252 . . . . . . . . . 10 ((𝜑𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
3634, 35syldan 485 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
37 radcnvrat.n0 . . . . . . . . 9 ((𝜑𝑘𝑍) → (𝐴𝑘) ≠ 0)
3833, 36, 37divcld 10650 . . . . . . . 8 ((𝜑𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
3938abscld 13969 . . . . . . 7 ((𝜑𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) ∈ ℝ)
4027, 39eqeltrd 2687 . . . . . 6 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) ∈ ℝ)
414, 6, 16, 40climrecl 14108 . . . . 5 (𝜑𝐿 ∈ ℝ)
42 radcnvrat.ln0 . . . . 5 (𝜑𝐿 ≠ 0)
4341, 42rereccld 10701 . . . 4 (𝜑 → (1 / 𝐿) ∈ ℝ)
4443rexrd 9945 . . 3 (𝜑 → (1 / 𝐿) ∈ ℝ*)
45 simpr 475 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
46 elrabi 3327 . . . . 5 (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → 𝑥 ∈ ℝ)
4743adantr 479 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (1 / 𝐿) ∈ ℝ)
48 recn 9882 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ → 𝑥 ∈ ℂ)
4948abscld 13969 . . . . . . . . . . . 12 (𝑥 ∈ ℝ → (abs‘𝑥) ∈ ℝ)
5049adantl 480 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℝ)
5147, 50ltlend 10033 . . . . . . . . . 10 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5251simplbda 651 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → (abs‘𝑥) ≠ (1 / 𝐿))
5351adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
54 simpr 475 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
5554biantrud 526 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ((1 / 𝐿) ≤ (abs‘𝑥) ∧ (abs‘𝑥) ≠ (1 / 𝐿))))
5647, 50lenltd 10034 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5756adantr 479 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) ≤ (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
5853, 55, 573bitr2d 294 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ (abs‘𝑥) < (1 / 𝐿)))
59 1cnd 9912 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℂ)
6050recnd 9924 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → (abs‘𝑥) ∈ ℂ)
6141recnd 9924 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐿 ∈ ℂ)
6261adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℂ)
6342adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑥 ∈ ℝ) → 𝐿 ≠ 0)
6459, 60, 62, 63divmul3d 10684 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) = (abs‘𝑥) ↔ 1 = ((abs‘𝑥) · 𝐿)))
65 eqcom 2616 . . . . . . . . . . . . . . . . 17 ((1 / 𝐿) = (abs‘𝑥) ↔ (abs‘𝑥) = (1 / 𝐿))
66 eqcom 2616 . . . . . . . . . . . . . . . . 17 (1 = ((abs‘𝑥) · 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1)
6764, 65, 663bitr3g 300 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) = (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) = 1))
6867necon3bid 2825 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) ≠ (1 / 𝐿) ↔ ((abs‘𝑥) · 𝐿) ≠ 1))
6968biimpa 499 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) · 𝐿) ≠ 1)
70 1red 9911 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 1 ∈ ℝ)
71 fvres 6102 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍 → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7271adantl 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝐷𝑍)‘𝑘) = (𝐷𝑘))
7372, 40eqeltrrd 2688 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℝ)
7438absge0d 13977 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑘𝑍) → 0 ≤ (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
7574, 27breqtrrd 4605 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → 0 ≤ ((𝐷𝑍)‘𝑘))
7675, 72breqtrd 4603 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → 0 ≤ (𝐷𝑘))
774, 6, 8, 73, 76climge0 14109 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → 0 ≤ 𝐿)
7841, 77, 42ne0gt0d 10025 . . . . . . . . . . . . . . . . . . 19 (𝜑 → 0 < 𝐿)
7941, 78elrpd 11701 . . . . . . . . . . . . . . . . . 18 (𝜑𝐿 ∈ ℝ+)
8079adantr 479 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥 ∈ ℝ) → 𝐿 ∈ ℝ+)
8150, 70, 80ltmuldivd 11751 . . . . . . . . . . . . . . . 16 ((𝜑𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
8281adantr 479 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ (abs‘𝑥) < (1 / 𝐿)))
83 elun 3714 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})))
84 inundif 3997 . . . . . . . . . . . . . . . . . . 19 ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) = ℝ
8584eleq2i 2679 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ((ℝ ∩ {0}) ∪ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
8683, 85bitr3i 264 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0})) ↔ 𝑥 ∈ ℝ)
87 elin 3757 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∩ {0}) ↔ (𝑥 ∈ ℝ ∧ 𝑥 ∈ {0}))
8887simprbi 478 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 ∈ {0})
89 elsni 4141 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ {0} → 𝑥 = 0)
9088, 89syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ (ℝ ∩ {0}) → 𝑥 = 0)
91 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑥 = 0 → (abs‘𝑥) = (abs‘0))
92 abs0 13819 . . . . . . . . . . . . . . . . . . . . . . . . 25 (abs‘0) = 0
9391, 92syl6eq 2659 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 = 0 → (abs‘𝑥) = 0)
9493oveq1d 6542 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → ((abs‘𝑥) · 𝐿) = (0 · 𝐿))
9561mul02d 10085 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (0 · 𝐿) = 0)
9694, 95sylan9eqr 2665 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) = 0)
97 0lt1 10399 . . . . . . . . . . . . . . . . . . . . . 22 0 < 1
9896, 97syl6eqbr 4616 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → ((abs‘𝑥) · 𝐿) < 1)
99 radcnvrat.g . . . . . . . . . . . . . . . . . . . . . . . 24 𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
10099, 30radcnv0 23891 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
101 eleq1 2675 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 0 → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ 0 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
102100, 101syl5ibrcom 235 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (𝑥 = 0 → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
103102imp 443 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑥 = 0) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
10498, 1032thd 253 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥 = 0) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
10590, 104sylan2 489 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
106105adantlr 746 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∩ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
107 ax-resscn 9849 . . . . . . . . . . . . . . . . . . . . . . 23 ℝ ⊆ ℂ
108 ssdif 3706 . . . . . . . . . . . . . . . . . . . . . . 23 (ℝ ⊆ ℂ → (ℝ ∖ {0}) ⊆ (ℂ ∖ {0}))
109107, 108ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (ℝ ∖ {0}) ⊆ (ℂ ∖ {0})
110109sseli 3563 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ (ℂ ∖ {0}))
111 nn0uz 11554 . . . . . . . . . . . . . . . . . . . . . 22 0 = (ℤ‘0)
1125ad2antrr 757 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → 𝑀 ∈ ℕ0)
113 fvex 6098 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐺𝑥) ∈ V
114113a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝐺𝑥) ∈ V)
115 eldifi 3693 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ∈ ℂ)
11699a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝜑𝐺 = (𝑥 ∈ ℂ ↦ (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛)))))
11710mptex 6368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V
118117a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑𝑥 ∈ ℂ) → (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))) ∈ V)
119116, 118fvmpt2d 6187 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ ℂ) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
120119adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
121 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝐴𝑛) = (𝐴𝑘))
122 oveq2 6535 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑛 = 𝑘 → (𝑥𝑛) = (𝑥𝑘))
123121, 122oveq12d 6545 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 = 𝑘 → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
124123adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
125 simpr 475 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑘 ∈ ℕ0)
126 ovex 6555 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐴𝑘) · (𝑥𝑘)) ∈ V
127126a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
128120, 124, 125, 127fvmptd 6182 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
12935adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℂ)
130 simplr 787 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → 𝑥 ∈ ℂ)
131130, 125expcld 12825 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → (𝑥𝑘) ∈ ℂ)
132129, 131mulcld 9916 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐴𝑘) · (𝑥𝑘)) ∈ ℂ)
133128, 132eqeltrd 2687 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
134115, 133sylanl2 680 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
135134adantlr 746 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘 ∈ ℕ0) → ((𝐺𝑥)‘𝑘) ∈ ℂ)
13634adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
137136, 128syldan 485 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
138115, 137sylanl2 680 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
13936adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ∈ ℂ)
140115adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑥 ∈ ℂ)
141140adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ∈ ℂ)
14234adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℕ0)
143141, 142expcld 12825 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ∈ ℂ)
14437adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴𝑘) ≠ 0)
145 eldifsni 4260 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑥 ∈ (ℂ ∖ {0}) → 𝑥 ≠ 0)
146145ad2antlr 758 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑥 ≠ 0)
147142nn0zd 11312 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℤ)
148141, 146, 147expne0d 12831 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥𝑘) ≠ 0)
149139, 143, 144, 148mulne0d 10528 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ≠ 0)
150138, 149eqnetrd 2848 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
151150adantlr 746 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) ≠ 0)
152 oveq1 6534 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑛 = 𝑘 → (𝑛 + 1) = (𝑘 + 1))
153152fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘(𝑛 + 1)) = ((𝐺𝑥)‘(𝑘 + 1)))
154 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑛 = 𝑘 → ((𝐺𝑥)‘𝑛) = ((𝐺𝑥)‘𝑘))
155153, 154oveq12d 6545 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑛 = 𝑘 → (((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)) = (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)))
156155fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 = 𝑘 → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
157156cbvmptv 4672 . . . . . . . . . . . . . . . . . . . . . 22 (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑘𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
1584reseq2i 5301 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀))
15922adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑍 ⊆ ℕ0)
160159resmptd 5358 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ 𝑍) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
161158, 160syl5eqr 2657 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) = (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
1626adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝑀 ∈ ℤ)
1638adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → 𝐷𝐿)
164140abscld 13969 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℝ)
165164recnd 9924 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (abs‘𝑥) ∈ ℂ)
16610mptex 6368 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V
167166a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V)
16873recnd 9924 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
169168adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) ∈ ℂ)
170 eqidd 2610 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) = (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))))
171156adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
172 fvex 6098 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) ∈ V
173172a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) ∈ V)
174170, 171, 142, 173fvmptd 6182 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))))
175119adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝐺𝑥) = (𝑛 ∈ ℕ0 ↦ ((𝐴𝑛) · (𝑥𝑛))))
176 simpr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → 𝑛 = (𝑘 + 1))
177176fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝐴𝑛) = (𝐴‘(𝑘 + 1)))
178176oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → (𝑥𝑛) = (𝑥↑(𝑘 + 1)))
179177, 178oveq12d 6545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = (𝑘 + 1)) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
180 1nn0 11155 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 1 ∈ ℕ0
181180a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → 1 ∈ ℕ0)
182136, 181nn0addcld 11202 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
183 ovex 6555 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V
184183a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) ∈ V)
185175, 179, 182, 184fvmptd 6182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘(𝑘 + 1)) = ((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))))
186123adantl 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) ∧ 𝑛 = 𝑘) → ((𝐴𝑛) · (𝑥𝑛)) = ((𝐴𝑘) · (𝑥𝑘)))
187126a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐴𝑘) · (𝑥𝑘)) ∈ V)
188175, 186, 136, 187fvmptd 6182 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → ((𝐺𝑥)‘𝑘) = ((𝐴𝑘) · (𝑥𝑘)))
189185, 188oveq12d 6545 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ ℂ) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
190115, 189sylanl2 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
19133adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐴‘(𝑘 + 1)) ∈ ℂ)
192115, 182sylanl2 680 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℕ0)
193141, 192expcld 12825 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑(𝑘 + 1)) ∈ ℂ)
194191, 139, 193, 143, 144, 148divmuldivd 10691 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) · (𝑥↑(𝑘 + 1))) / ((𝐴𝑘) · (𝑥𝑘))))
195142nn0cnd 11200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 𝑘 ∈ ℂ)
196 1cnd 9912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → 1 ∈ ℂ)
197195, 196pncan2d 10245 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑘 + 1) − 𝑘) = 1)
198197oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = (𝑥↑1))
199192nn0zd 11312 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑘 + 1) ∈ ℤ)
200141, 146, 147, 199expsubd 12836 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑((𝑘 + 1) − 𝑘)) = ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)))
201141exp1d 12820 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝑥↑1) = 𝑥)
202198, 200, 2013eqtr3d 2651 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑥↑(𝑘 + 1)) / (𝑥𝑘)) = 𝑥)
203202oveq2d 6543 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · ((𝑥↑(𝑘 + 1)) / (𝑥𝑘))) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
204190, 194, 2033eqtr2d 2649 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘)) = (((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥))
205204fveq2d 6092 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐺𝑥)‘(𝑘 + 1)) / ((𝐺𝑥)‘𝑘))) = (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)))
20638adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) ∈ ℂ)
207206, 141absmuld 13987 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘(((𝐴‘(𝑘 + 1)) / (𝐴𝑘)) · 𝑥)) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
208174, 205, 2073eqtrd 2647 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)))
20972, 27eqtr3d 2645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
210209adantlr 746 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (𝐷𝑘) = (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))))
211210eqcomd 2615 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) = (𝐷𝑘))
212211oveq1d 6542 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((abs‘((𝐴‘(𝑘 + 1)) / (𝐴𝑘))) · (abs‘𝑥)) = ((𝐷𝑘) · (abs‘𝑥)))
213165adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → (abs‘𝑥) ∈ ℂ)
214169, 213mulcomd 9917 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝐷𝑘) · (abs‘𝑥)) = ((abs‘𝑥) · (𝐷𝑘)))
215208, 212, 2143eqtrd 2647 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ 𝑘𝑍) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛))))‘𝑘) = ((abs‘𝑥) · (𝐷𝑘)))
2164, 162, 163, 165, 167, 169, 215climmulc2 14161 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
217 climres 14100 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ∈ V) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
218162, 166, 217sylancl 692 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿) ↔ (𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿)))
219216, 218mpbird 245 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → ((𝑛 ∈ ℕ0 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ↾ (ℤ𝑀)) ⇝ ((abs‘𝑥) · 𝐿))
220161, 219eqbrtrrd 4601 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝜑𝑥 ∈ (ℂ ∖ {0})) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
221220adantr 479 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑛𝑍 ↦ (abs‘(((𝐺𝑥)‘(𝑛 + 1)) / ((𝐺𝑥)‘𝑛)))) ⇝ ((abs‘𝑥) · 𝐿))
222 simpr 475 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) · 𝐿) ≠ 1)
223111, 4, 112, 114, 135, 151, 157, 221, 222cvgdvgrat 37330 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑥 ∈ (ℂ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
224110, 223sylanl2 680 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
225 eldifi 3693 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ (ℝ ∖ {0}) → 𝑥 ∈ ℝ)
226 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑟 = 𝑥 → (𝐺𝑟) = (𝐺𝑥))
227226seqeq3d 12626 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑟 = 𝑥 → seq0( + , (𝐺𝑟)) = seq0( + , (𝐺𝑥)))
228227eleq1d 2671 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑟 = 𝑥 → (seq0( + , (𝐺𝑟)) ∈ dom ⇝ ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
229228elrab3 3331 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 ∈ ℝ → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
230225, 229syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ (ℝ ∖ {0}) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
231230ad2antlr 758 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } ↔ seq0( + , (𝐺𝑥)) ∈ dom ⇝ ))
232224, 231bitr4d 269 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ (ℝ ∖ {0})) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
233232an32s 841 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ (ℝ ∖ {0})) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
234106, 233jaodan 821 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ (𝑥 ∈ (ℝ ∩ {0}) ∨ 𝑥 ∈ (ℝ ∖ {0}))) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23586, 234sylan2br 491 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ ((abs‘𝑥) · 𝐿) ≠ 1) ∧ 𝑥 ∈ ℝ) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
236235an32s 841 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → (((abs‘𝑥) · 𝐿) < 1 ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23782, 236bitr3d 268 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ) ∧ ((abs‘𝑥) · 𝐿) ≠ 1) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
23869, 237syldan 485 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) ↔ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
239238notbid 306 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → (¬ (abs‘𝑥) < (1 / 𝐿) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
24058, 239bitrd 266 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) ↔ ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
241240biimpd 217 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
242241impancom 454 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ((abs‘𝑥) ≠ (1 / 𝐿) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
24352, 242mpd 15 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < (abs‘𝑥)) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
244243ex 448 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < (abs‘𝑥) → ¬ 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
245244con2d 127 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < (abs‘𝑥)))
24647adantr 479 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) ∈ ℝ)
247 simplr 787 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ∈ ℝ)
24850adantr 479 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (abs‘𝑥) ∈ ℝ)
249 simpr 475 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < 𝑥)
250247leabsd 13947 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → 𝑥 ≤ (abs‘𝑥))
251246, 247, 248, 249, 250ltletrd 10048 . . . . . . 7 (((𝜑𝑥 ∈ ℝ) ∧ (1 / 𝐿) < 𝑥) → (1 / 𝐿) < (abs‘𝑥))
252251ex 448 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → ((1 / 𝐿) < 𝑥 → (1 / 𝐿) < (abs‘𝑥)))
253245, 252nsyld 152 . . . . 5 ((𝜑𝑥 ∈ ℝ) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
25446, 253sylan2 489 . . . 4 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → (𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → ¬ (1 / 𝐿) < 𝑥))
25545, 254mpd 15 . . 3 ((𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }) → ¬ (1 / 𝐿) < 𝑥)
25643renegcld 10308 . . . . . . . . 9 (𝜑 → -(1 / 𝐿) ∈ ℝ)
257256rexrd 9945 . . . . . . . 8 (𝜑 → -(1 / 𝐿) ∈ ℝ*)
258 iooss1 12037 . . . . . . . 8 ((-(1 / 𝐿) ∈ ℝ* ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
259257, 258sylan 486 . . . . . . 7 ((𝜑 ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
260259adantlr 746 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → (𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)))
261 eliooord 12060 . . . . . . . . . . 11 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → (𝑥 < 𝑘𝑘 < (1 / 𝐿)))
262261simpld 473 . . . . . . . . . 10 (𝑘 ∈ (𝑥(,)(1 / 𝐿)) → 𝑥 < 𝑘)
263262rgen 2905 . . . . . . . . 9 𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘
264 ioon0 12028 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
26544, 264sylan2 489 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ*𝜑) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
266265ancoms 467 . . . . . . . . . . 11 ((𝜑𝑥 ∈ ℝ*) → ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ 𝑥 < (1 / 𝐿)))
267266biimpar 500 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (𝑥(,)(1 / 𝐿)) ≠ ∅)
268 r19.2zb 4012 . . . . . . . . . 10 ((𝑥(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
269267, 268sylib 206 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → (∀𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘))
270263, 269mpi 20 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ*) ∧ 𝑥 < (1 / 𝐿)) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
271270anasss 676 . . . . . . 7 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
272271adantr 479 . . . . . 6 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘)
273 ssrexv 3629 . . . . . 6 ((𝑥(,)(1 / 𝐿)) ⊆ (-(1 / 𝐿)(,)(1 / 𝐿)) → (∃𝑘 ∈ (𝑥(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
274260, 272, 273sylc 62 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
275 simplr 787 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ∈ ℝ*)
276 xrltnle 9956 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) ↔ ¬ -(1 / 𝐿) ≤ 𝑥))
277 xrltle 11817 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (𝑥 < -(1 / 𝐿) → 𝑥 ≤ -(1 / 𝐿)))
278276, 277sylbird 248 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ* ∧ -(1 / 𝐿) ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
279257, 278sylan2 489 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ*𝜑) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
280279ancoms 467 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ*) → (¬ -(1 / 𝐿) ≤ 𝑥𝑥 ≤ -(1 / 𝐿)))
281280imp 443 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → 𝑥 ≤ -(1 / 𝐿))
282 iooss1 12037 . . . . . . . . . . 11 ((𝑥 ∈ ℝ*𝑥 ≤ -(1 / 𝐿)) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
283275, 281, 282syl2anc 690 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ (𝑥(,)(1 / 𝐿)))
284283sselda 3567 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑘 ∈ (𝑥(,)(1 / 𝐿)))
285284, 262syl 17 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) ∧ 𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 < 𝑘)
286285ralrimiva 2948 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
28741, 78recgt0d 10807 . . . . . . . . . . . . 13 (𝜑 → 0 < (1 / 𝐿))
28843, 43, 287, 287addgt0d 10451 . . . . . . . . . . . 12 (𝜑 → 0 < ((1 / 𝐿) + (1 / 𝐿)))
28943recnd 9924 . . . . . . . . . . . . 13 (𝜑 → (1 / 𝐿) ∈ ℂ)
290289, 289subnegd 10250 . . . . . . . . . . . 12 (𝜑 → ((1 / 𝐿) − -(1 / 𝐿)) = ((1 / 𝐿) + (1 / 𝐿)))
291288, 290breqtrrd 4605 . . . . . . . . . . 11 (𝜑 → 0 < ((1 / 𝐿) − -(1 / 𝐿)))
292256, 43posdifd 10463 . . . . . . . . . . 11 (𝜑 → (-(1 / 𝐿) < (1 / 𝐿) ↔ 0 < ((1 / 𝐿) − -(1 / 𝐿))))
293291, 292mpbird 245 . . . . . . . . . 10 (𝜑 → -(1 / 𝐿) < (1 / 𝐿))
294 ioon0 12028 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
295257, 44, 294syl2anc 690 . . . . . . . . . 10 (𝜑 → ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ -(1 / 𝐿) < (1 / 𝐿)))
296293, 295mpbird 245 . . . . . . . . 9 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅)
297 r19.2zb 4012 . . . . . . . . 9 ((-(1 / 𝐿)(,)(1 / 𝐿)) ≠ ∅ ↔ (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
298296, 297sylib 206 . . . . . . . 8 (𝜑 → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
299298ad2antrr 757 . . . . . . 7 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → (∀𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘))
300286, 299mpd 15 . . . . . 6 (((𝜑𝑥 ∈ ℝ*) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
301300adantlrr 752 . . . . 5 (((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) ∧ ¬ -(1 / 𝐿) ≤ 𝑥) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
302274, 301pm2.61dan 827 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘)
303 elioo2 12043 . . . . . . . . . . 11 ((-(1 / 𝐿) ∈ ℝ* ∧ (1 / 𝐿) ∈ ℝ*) → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
304257, 44, 303syl2anc 690 . . . . . . . . . 10 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) ↔ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
305304biimpa 499 . . . . . . . . 9 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))
306 simpr 475 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ ℝ) → 𝑥 ∈ ℝ)
307306, 47absltd 13962 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) ↔ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))))
30850adantr 479 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ∈ ℝ)
309 simpr 475 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) < (1 / 𝐿))
310308, 309ltned 10024 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → (abs‘𝑥) ≠ (1 / 𝐿))
311238biimpd 217 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) ≠ (1 / 𝐿)) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
312311impancom 454 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → ((abs‘𝑥) ≠ (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
313310, 312mpd 15 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ) ∧ (abs‘𝑥) < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
314313ex 448 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ ℝ) → ((abs‘𝑥) < (1 / 𝐿) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
315307, 314sylbird 248 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ ℝ) → ((-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
316315impr 646 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
317316expcom 449 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ (-(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
3183173impb 1251 . . . . . . . . . 10 ((𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿)) → (𝜑𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
319318impcom 444 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ ℝ ∧ -(1 / 𝐿) < 𝑥𝑥 < (1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
320305, 319syldan 485 . . . . . . . 8 ((𝜑𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
321320ex 448 . . . . . . 7 (𝜑 → (𝑥 ∈ (-(1 / 𝐿)(,)(1 / 𝐿)) → 𝑥 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }))
322321ssrdv 3573 . . . . . 6 (𝜑 → (-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ })
323 ssrexv 3629 . . . . . 6 ((-(1 / 𝐿)(,)(1 / 𝐿)) ⊆ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ } → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
324322, 323syl 17 . . . . 5 (𝜑 → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
325324adantr 479 . . . 4 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → (∃𝑘 ∈ (-(1 / 𝐿)(,)(1 / 𝐿))𝑥 < 𝑘 → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘))
326302, 325mpd 15 . . 3 ((𝜑 ∧ (𝑥 ∈ ℝ*𝑥 < (1 / 𝐿))) → ∃𝑘 ∈ {𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }𝑥 < 𝑘)
3273, 44, 255, 326eqsupd 8223 . 2 (𝜑 → sup({𝑟 ∈ ℝ ∣ seq0( + , (𝐺𝑟)) ∈ dom ⇝ }, ℝ*, < ) = (1 / 𝐿))
3281, 327syl5eq 2655 1 (𝜑𝑅 = (1 / 𝐿))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382  w3a 1030   = wceq 1474  wcel 1976  wne 2779  wral 2895  wrex 2896  {crab 2899  Vcvv 3172  cdif 3536  cun 3537  cin 3538  wss 3539  c0 3873  {csn 4124   class class class wbr 4577  cmpt 4637   Or wor 4948  dom cdm 5028  cres 5030  wf 5786  cfv 5790  (class class class)co 6527  supcsup 8206  cc 9790  cr 9791  0cc0 9792  1c1 9793   + caddc 9795   · cmul 9797  *cxr 9929   < clt 9930  cle 9931  cmin 10117  -cneg 10118   / cdiv 10533  0cn0 11139  cz 11210  cuz 11519  +crp 11664  (,)cioo 12002  seqcseq 12618  cexp 12677  abscabs 13768  cli 14009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870  ax-addf 9871  ax-mulf 9872
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-inf 8209  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-q 11621  df-rp 11665  df-ioo 12006  df-ico 12008  df-fz 12153  df-fzo 12290  df-fl 12410  df-seq 12619  df-exp 12678  df-hash 12935  df-shft 13601  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-limsup 13996  df-clim 14013  df-rlim 14014  df-sum 14211
This theorem is referenced by:  binomcxplemradcnv  37369
  Copyright terms: Public domain W3C validator