MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat Structured version   Visualization version   GIF version

Theorem ragflat 25317
Description: Deduce equality from two right angles. Theorem 8.7 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat.2 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragflat (𝜑𝐵 = 𝐶)

Proof of Theorem ragflat
StepHypRef Expression
1 simpr 475 . 2 ((𝜑𝐵 = 𝐶) → 𝐵 = 𝐶)
2 israg.p . . 3 𝑃 = (Base‘𝐺)
3 israg.d . . 3 = (dist‘𝐺)
4 israg.i . . 3 𝐼 = (Itv‘𝐺)
5 israg.l . . 3 𝐿 = (LineG‘𝐺)
6 israg.s . . 3 𝑆 = (pInvG‘𝐺)
7 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
87adantr 479 . . 3 ((𝜑𝐵𝐶) → 𝐺 ∈ TarskiG)
9 israg.a . . . 4 (𝜑𝐴𝑃)
109adantr 479 . . 3 ((𝜑𝐵𝐶) → 𝐴𝑃)
11 israg.b . . . 4 (𝜑𝐵𝑃)
1211adantr 479 . . 3 ((𝜑𝐵𝐶) → 𝐵𝑃)
13 israg.c . . . 4 (𝜑𝐶𝑃)
1413adantr 479 . . 3 ((𝜑𝐵𝐶) → 𝐶𝑃)
15 eqid 2609 . . . 4 (𝑆𝐶) = (𝑆𝐶)
162, 3, 4, 5, 6, 8, 14, 15, 10mircl 25274 . . 3 ((𝜑𝐵𝐶) → ((𝑆𝐶)‘𝐴) ∈ 𝑃)
17 ragflat.1 . . . 4 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
1817adantr 479 . . 3 ((𝜑𝐵𝐶) → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
192, 3, 4, 5, 6, 8, 14, 15, 10mircgr 25270 . . . . . 6 ((𝜑𝐵𝐶) → (𝐶 ((𝑆𝐶)‘𝐴)) = (𝐶 𝐴))
202, 3, 4, 8, 14, 16, 14, 10, 19tgcgrcomlr 25092 . . . . 5 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (𝐴 𝐶))
212, 3, 4, 5, 6, 8, 10, 12, 14israg 25310 . . . . . 6 ((𝜑𝐵𝐶) → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
2218, 21mpbid 220 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
23 eqid 2609 . . . . . . 7 (𝑆𝐵) = (𝑆𝐵)
242, 3, 4, 5, 6, 8, 12, 23, 14mircl 25274 . . . . . 6 ((𝜑𝐵𝐶) → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
25 ragflat.2 . . . . . . . . . 10 (𝜑 → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
2625adantr 479 . . . . . . . . 9 ((𝜑𝐵𝐶) → ⟨“𝐴𝐶𝐵”⟩ ∈ (∟G‘𝐺))
272, 3, 4, 5, 6, 8, 10, 14, 12, 26ragcom 25311 . . . . . . . 8 ((𝜑𝐵𝐶) → ⟨“𝐵𝐶𝐴”⟩ ∈ (∟G‘𝐺))
28 simpr 475 . . . . . . . 8 ((𝜑𝐵𝐶) → 𝐵𝐶)
292, 3, 4, 5, 6, 8, 12, 23, 14mirbtwn 25271 . . . . . . . . . 10 ((𝜑𝐵𝐶) → 𝐵 ∈ (((𝑆𝐵)‘𝐶)𝐼𝐶))
302, 3, 4, 8, 24, 12, 14, 29tgbtwncom 25100 . . . . . . . . 9 ((𝜑𝐵𝐶) → 𝐵 ∈ (𝐶𝐼((𝑆𝐵)‘𝐶)))
312, 5, 4, 8, 14, 24, 12, 30btwncolg1 25168 . . . . . . . 8 ((𝜑𝐵𝐶) → (𝐵 ∈ (𝐶𝐿((𝑆𝐵)‘𝐶)) ∨ 𝐶 = ((𝑆𝐵)‘𝐶)))
322, 3, 4, 5, 6, 8, 12, 14, 10, 24, 27, 28, 31ragcol 25312 . . . . . . 7 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺))
332, 3, 4, 5, 6, 8, 24, 14, 10israg 25310 . . . . . . 7 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐵)‘𝐶)𝐶𝐴”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴))))
3432, 33mpbid 220 . . . . . 6 ((𝜑𝐵𝐶) → (((𝑆𝐵)‘𝐶) 𝐴) = (((𝑆𝐵)‘𝐶) ((𝑆𝐶)‘𝐴)))
352, 3, 4, 8, 24, 10, 24, 16, 34tgcgrcomlr 25092 . . . . 5 ((𝜑𝐵𝐶) → (𝐴 ((𝑆𝐵)‘𝐶)) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
3620, 22, 353eqtrd 2647 . . . 4 ((𝜑𝐵𝐶) → (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶)))
372, 3, 4, 5, 6, 8, 16, 12, 14israg 25310 . . . 4 ((𝜑𝐵𝐶) → (⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (((𝑆𝐶)‘𝐴) 𝐶) = (((𝑆𝐶)‘𝐴) ((𝑆𝐵)‘𝐶))))
3836, 37mpbird 245 . . 3 ((𝜑𝐵𝐶) → ⟨“((𝑆𝐶)‘𝐴)𝐵𝐶”⟩ ∈ (∟G‘𝐺))
392, 3, 4, 5, 6, 8, 14, 15, 10mirbtwn 25271 . . . 4 ((𝜑𝐵𝐶) → 𝐶 ∈ (((𝑆𝐶)‘𝐴)𝐼𝐴))
402, 3, 4, 8, 16, 14, 10, 39tgbtwncom 25100 . . 3 ((𝜑𝐵𝐶) → 𝐶 ∈ (𝐴𝐼((𝑆𝐶)‘𝐴)))
412, 3, 4, 5, 6, 8, 10, 12, 14, 16, 18, 38, 40ragflat2 25316 . 2 ((𝜑𝐵𝐶) → 𝐵 = 𝐶)
421, 41pm2.61dane 2868 1 (𝜑𝐵 = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wcel 1976  wne 2779  cfv 5790  (class class class)co 6527  ⟨“cs3 13384  Basecbs 15641  distcds 15723  TarskiGcstrkg 25046  Itvcitv 25052  LineGclng 25053  pInvGcmir 25265  ∟Gcrag 25306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-pm 7724  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-card 8625  df-cda 8850  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-fz 12153  df-fzo 12290  df-hash 12935  df-word 13100  df-concat 13102  df-s1 13103  df-s2 13390  df-s3 13391  df-trkgc 25064  df-trkgb 25065  df-trkgcb 25066  df-trkg 25069  df-cgrg 25124  df-mir 25266  df-rag 25307
This theorem is referenced by:  ragtriva  25318  footex  25331  foot  25332
  Copyright terms: Public domain W3C validator