Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragflat2 Structured version   Visualization version   GIF version

Theorem ragflat2 25511
 Description: Deduce equality from two right angles. Theorem 8.6 of [Schwabhauser] p. 58. (Contributed by Thierry Arnoux, 3-Sep-2019.)
Hypotheses
Ref Expression
israg.p 𝑃 = (Base‘𝐺)
israg.d = (dist‘𝐺)
israg.i 𝐼 = (Itv‘𝐺)
israg.l 𝐿 = (LineG‘𝐺)
israg.s 𝑆 = (pInvG‘𝐺)
israg.g (𝜑𝐺 ∈ TarskiG)
israg.a (𝜑𝐴𝑃)
israg.b (𝜑𝐵𝑃)
israg.c (𝜑𝐶𝑃)
ragflat2.d (𝜑𝐷𝑃)
ragflat2.1 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat2.2 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
ragflat2.3 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
Assertion
Ref Expression
ragflat2 (𝜑𝐵 = 𝐶)

Proof of Theorem ragflat2
StepHypRef Expression
1 israg.p . . . 4 𝑃 = (Base‘𝐺)
2 israg.l . . . 4 𝐿 = (LineG‘𝐺)
3 israg.i . . . 4 𝐼 = (Itv‘𝐺)
4 israg.g . . . 4 (𝜑𝐺 ∈ TarskiG)
5 israg.a . . . 4 (𝜑𝐴𝑃)
6 ragflat2.d . . . 4 (𝜑𝐷𝑃)
7 israg.c . . . 4 (𝜑𝐶𝑃)
8 eqid 2621 . . . 4 (cgrG‘𝐺) = (cgrG‘𝐺)
9 israg.d . . . . 5 = (dist‘𝐺)
10 israg.s . . . . 5 𝑆 = (pInvG‘𝐺)
11 israg.b . . . . 5 (𝜑𝐵𝑃)
12 eqid 2621 . . . . 5 (𝑆𝐵) = (𝑆𝐵)
131, 9, 3, 2, 10, 4, 11, 12, 7mircl 25469 . . . 4 (𝜑 → ((𝑆𝐵)‘𝐶) ∈ 𝑃)
14 ragflat2.3 . . . 4 (𝜑𝐶 ∈ (𝐴𝐼𝐷))
15 ragflat2.1 . . . . 5 (𝜑 → ⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺))
161, 9, 3, 2, 10, 4, 5, 11, 7israg 25505 . . . . 5 (𝜑 → (⟨“𝐴𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶))))
1715, 16mpbid 222 . . . 4 (𝜑 → (𝐴 𝐶) = (𝐴 ((𝑆𝐵)‘𝐶)))
18 ragflat2.2 . . . . 5 (𝜑 → ⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺))
191, 9, 3, 2, 10, 4, 6, 11, 7israg 25505 . . . . 5 (𝜑 → (⟨“𝐷𝐵𝐶”⟩ ∈ (∟G‘𝐺) ↔ (𝐷 𝐶) = (𝐷 ((𝑆𝐵)‘𝐶))))
2018, 19mpbid 222 . . . 4 (𝜑 → (𝐷 𝐶) = (𝐷 ((𝑆𝐵)‘𝐶)))
211, 2, 3, 4, 5, 6, 7, 8, 13, 5, 9, 14, 17, 20tgidinside 25379 . . 3 (𝜑𝐶 = ((𝑆𝐵)‘𝐶))
2221eqcomd 2627 . 2 (𝜑 → ((𝑆𝐵)‘𝐶) = 𝐶)
231, 9, 3, 2, 10, 4, 11, 12, 7mirinv 25474 . 2 (𝜑 → (((𝑆𝐵)‘𝐶) = 𝐶𝐵 = 𝐶))
2422, 23mpbid 222 1 (𝜑𝐵 = 𝐶)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1480   ∈ wcel 1987  ‘cfv 5852  (class class class)co 6610  ⟨“cs3 13531  Basecbs 15788  distcds 15878  TarskiGcstrkg 25242  Itvcitv 25248  LineGclng 25249  cgrGccgrg 25318  pInvGcmir 25460  ∟Gcrag 25501 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9943  ax-resscn 9944  ax-1cn 9945  ax-icn 9946  ax-addcl 9947  ax-addrcl 9948  ax-mulcl 9949  ax-mulrcl 9950  ax-mulcom 9951  ax-addass 9952  ax-mulass 9953  ax-distr 9954  ax-i2m1 9955  ax-1ne0 9956  ax-1rid 9957  ax-rnegex 9958  ax-rrecex 9959  ax-cnre 9960  ax-pre-lttri 9961  ax-pre-lttrn 9962  ax-pre-ltadd 9963  ax-pre-mulgt0 9964 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-en 7907  df-dom 7908  df-sdom 7909  df-fin 7910  df-card 8716  df-cda 8941  df-pnf 10027  df-mnf 10028  df-xr 10029  df-ltxr 10030  df-le 10031  df-sub 10219  df-neg 10220  df-nn 10972  df-2 11030  df-3 11031  df-n0 11244  df-xnn0 11315  df-z 11329  df-uz 11639  df-fz 12276  df-fzo 12414  df-hash 13065  df-word 13245  df-concat 13247  df-s1 13248  df-s2 13537  df-s3 13538  df-trkgc 25260  df-trkgb 25261  df-trkgcb 25262  df-trkg 25265  df-cgrg 25319  df-mir 25461  df-rag 25502 This theorem is referenced by:  ragflat  25512  opphllem5  25556  opphllem6  25557
 Copyright terms: Public domain W3C validator