MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragperp Structured version   Visualization version   GIF version

Theorem ragperp 26430
Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
ragperp.b (𝜑𝐵 ∈ ran 𝐿)
ragperp.x (𝜑𝑋 ∈ (𝐴𝐵))
ragperp.u (𝜑𝑈𝐴)
ragperp.v (𝜑𝑉𝐵)
ragperp.1 (𝜑𝑈𝑋)
ragperp.2 (𝜑𝑉𝑋)
ragperp.r (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragperp (𝜑𝐴(⟂G‘𝐺)𝐵)

Proof of Theorem ragperp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . 4 𝑃 = (Base‘𝐺)
2 isperp.d . . . 4 = (dist‘𝐺)
3 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
4 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2818 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 481 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐺 ∈ TarskiG)
8 ragperp.b . . . . . 6 (𝜑𝐵 ∈ ran 𝐿)
98adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐵 ∈ ran 𝐿)
10 simprr 769 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝐵)
111, 4, 3, 7, 9, 10tglnpt 26262 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝑃)
12 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
1312adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐴 ∈ ran 𝐿)
14 ragperp.x . . . . . . 7 (𝜑𝑋 ∈ (𝐴𝐵))
1514elin1d 4172 . . . . . 6 (𝜑𝑋𝐴)
1615adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝐴)
171, 4, 3, 7, 13, 16tglnpt 26262 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝑃)
18 simprl 767 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝐴)
191, 4, 3, 7, 13, 18tglnpt 26262 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝑃)
20 ragperp.v . . . . . . 7 (𝜑𝑉𝐵)
2120adantr 481 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝐵)
221, 4, 3, 7, 9, 21tglnpt 26262 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑃)
23 ragperp.u . . . . . . . . 9 (𝜑𝑈𝐴)
2423adantr 481 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝐴)
251, 4, 3, 7, 13, 24tglnpt 26262 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑃)
26 ragperp.r . . . . . . . 8 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
2726adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
28 ragperp.1 . . . . . . . 8 (𝜑𝑈𝑋)
2928adantr 481 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑋)
3023ad2antrr 722 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈𝐴)
316ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG)
3217adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑃)
3319adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝑃)
34 simpr 485 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢)
3534neqned 3020 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑢)
3612ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿)
3715ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝐴)
3818adantr 481 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝐴)
391, 3, 4, 31, 32, 33, 35, 35, 36, 37, 38tglinethru 26349 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢))
4030, 39eleqtrd 2912 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢))
4140ex 413 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4241orrd 857 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4342orcomd 865 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢))
441, 2, 3, 4, 5, 7, 25, 17, 22, 19, 27, 29, 43ragcol 26412 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑉”⟩ ∈ (∟G‘𝐺))
451, 2, 3, 4, 5, 7, 19, 17, 22, 44ragcom 26411 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑉𝑋𝑢”⟩ ∈ (∟G‘𝐺))
46 ragperp.2 . . . . . 6 (𝜑𝑉𝑋)
4746adantr 481 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑋)
4820ad2antrr 722 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉𝐵)
496ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG)
5017adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑃)
5111adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝑃)
52 simpr 485 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣)
5352neqned 3020 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑣)
548ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿)
5514elin2d 4173 . . . . . . . . . . 11 (𝜑𝑋𝐵)
5655ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝐵)
5710adantr 481 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝐵)
581, 3, 4, 49, 50, 51, 53, 53, 54, 56, 57tglinethru 26349 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣))
5948, 58eleqtrd 2912 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣))
6059ex 413 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6160orrd 857 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6261orcomd 865 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣))
631, 2, 3, 4, 5, 7, 22, 17, 19, 11, 45, 47, 62ragcol 26412 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑣𝑋𝑢”⟩ ∈ (∟G‘𝐺))
641, 2, 3, 4, 5, 7, 11, 17, 19, 63ragcom 26411 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
6564ralrimivva 3188 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
661, 2, 3, 4, 6, 12, 8, 14isperp2 26428 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
6765, 66mpbird 258 1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396   = wceq 1528  wcel 2105  wne 3013  wral 3135  cin 3932   class class class wbr 5057  ran crn 5549  cfv 6348  (class class class)co 7145  ⟨“cs3 14192  Basecbs 16471  distcds 16562  TarskiGcstrkg 26143  Itvcitv 26149  LineGclng 26150  pInvGcmir 26365  ∟Gcrag 26406  ⟂Gcperpg 26408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-map 8397  df-pm 8398  df-en 8498  df-dom 8499  df-sdom 8500  df-fin 8501  df-dju 9318  df-card 9356  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-2 11688  df-3 11689  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-fz 12881  df-fzo 13022  df-hash 13679  df-word 13850  df-concat 13911  df-s1 13938  df-s2 14198  df-s3 14199  df-trkgc 26161  df-trkgb 26162  df-trkgcb 26163  df-trkg 26166  df-cgrg 26224  df-mir 26366  df-rag 26407  df-perpg 26409
This theorem is referenced by:  footexALT  26431  footexlem2  26433  colperpexlem3  26445  mideulem2  26447  lmimid  26507  hypcgrlem1  26512  hypcgrlem2  26513  trgcopyeulem  26518
  Copyright terms: Public domain W3C validator