MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ragperp Structured version   Visualization version   GIF version

Theorem ragperp 25326
Description: Deduce that two lines are perpendicular from a right angle statement. One direction of theorem 8.13 of [Schwabhauser] p. 59. (Contributed by Thierry Arnoux, 20-Oct-2019.)
Hypotheses
Ref Expression
isperp.p 𝑃 = (Base‘𝐺)
isperp.d = (dist‘𝐺)
isperp.i 𝐼 = (Itv‘𝐺)
isperp.l 𝐿 = (LineG‘𝐺)
isperp.g (𝜑𝐺 ∈ TarskiG)
isperp.a (𝜑𝐴 ∈ ran 𝐿)
ragperp.b (𝜑𝐵 ∈ ran 𝐿)
ragperp.x (𝜑𝑋 ∈ (𝐴𝐵))
ragperp.u (𝜑𝑈𝐴)
ragperp.v (𝜑𝑉𝐵)
ragperp.1 (𝜑𝑈𝑋)
ragperp.2 (𝜑𝑉𝑋)
ragperp.r (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
Assertion
Ref Expression
ragperp (𝜑𝐴(⟂G‘𝐺)𝐵)

Proof of Theorem ragperp
Dummy variables 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isperp.p . . . 4 𝑃 = (Base‘𝐺)
2 isperp.d . . . 4 = (dist‘𝐺)
3 isperp.i . . . 4 𝐼 = (Itv‘𝐺)
4 isperp.l . . . 4 𝐿 = (LineG‘𝐺)
5 eqid 2605 . . . 4 (pInvG‘𝐺) = (pInvG‘𝐺)
6 isperp.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
76adantr 479 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐺 ∈ TarskiG)
8 ragperp.b . . . . . 6 (𝜑𝐵 ∈ ran 𝐿)
98adantr 479 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐵 ∈ ran 𝐿)
10 simprr 791 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝐵)
111, 4, 3, 7, 9, 10tglnpt 25158 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑣𝑃)
12 isperp.a . . . . . 6 (𝜑𝐴 ∈ ran 𝐿)
1312adantr 479 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝐴 ∈ ran 𝐿)
14 inss1 3790 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
15 ragperp.x . . . . . . 7 (𝜑𝑋 ∈ (𝐴𝐵))
1614, 15sseldi 3561 . . . . . 6 (𝜑𝑋𝐴)
1716adantr 479 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝐴)
181, 4, 3, 7, 13, 17tglnpt 25158 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑋𝑃)
19 simprl 789 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝐴)
201, 4, 3, 7, 13, 19tglnpt 25158 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑢𝑃)
21 ragperp.v . . . . . . 7 (𝜑𝑉𝐵)
2221adantr 479 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝐵)
231, 4, 3, 7, 9, 22tglnpt 25158 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑃)
24 ragperp.u . . . . . . . . 9 (𝜑𝑈𝐴)
2524adantr 479 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝐴)
261, 4, 3, 7, 13, 25tglnpt 25158 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑃)
27 ragperp.r . . . . . . . 8 (𝜑 → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
2827adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑈𝑋𝑉”⟩ ∈ (∟G‘𝐺))
29 ragperp.1 . . . . . . . 8 (𝜑𝑈𝑋)
3029adantr 479 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑈𝑋)
3124ad2antrr 757 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈𝐴)
326ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐺 ∈ TarskiG)
3318adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑃)
3420adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝑃)
35 simpr 475 . . . . . . . . . . . . 13 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → ¬ 𝑋 = 𝑢)
3635neqned 2784 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝑢)
3712ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 ∈ ran 𝐿)
3816ad2antrr 757 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑋𝐴)
3919adantr 479 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑢𝐴)
401, 3, 4, 32, 33, 34, 36, 36, 37, 38, 39tglinethru 25245 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝐴 = (𝑋𝐿𝑢))
4131, 40eleqtrd 2685 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑢) → 𝑈 ∈ (𝑋𝐿𝑢))
4241ex 448 . . . . . . . . 9 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4342orrd 391 . . . . . . . 8 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑢𝑈 ∈ (𝑋𝐿𝑢)))
4443orcomd 401 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑈 ∈ (𝑋𝐿𝑢) ∨ 𝑋 = 𝑢))
451, 2, 3, 4, 5, 7, 26, 18, 23, 20, 28, 30, 44ragcol 25308 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑉”⟩ ∈ (∟G‘𝐺))
461, 2, 3, 4, 5, 7, 20, 18, 23, 45ragcom 25307 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑉𝑋𝑢”⟩ ∈ (∟G‘𝐺))
47 ragperp.2 . . . . . 6 (𝜑𝑉𝑋)
4847adantr 479 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → 𝑉𝑋)
4921ad2antrr 757 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉𝐵)
506ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐺 ∈ TarskiG)
5118adantr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑃)
5211adantr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝑃)
53 simpr 475 . . . . . . . . . . 11 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → ¬ 𝑋 = 𝑣)
5453neqned 2784 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝑣)
558ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 ∈ ran 𝐿)
56 inss2 3791 . . . . . . . . . . . 12 (𝐴𝐵) ⊆ 𝐵
5756, 15sseldi 3561 . . . . . . . . . . 11 (𝜑𝑋𝐵)
5857ad2antrr 757 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑋𝐵)
5910adantr 479 . . . . . . . . . 10 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑣𝐵)
601, 3, 4, 50, 51, 52, 54, 54, 55, 58, 59tglinethru 25245 . . . . . . . . 9 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝐵 = (𝑋𝐿𝑣))
6149, 60eleqtrd 2685 . . . . . . . 8 (((𝜑 ∧ (𝑢𝐴𝑣𝐵)) ∧ ¬ 𝑋 = 𝑣) → 𝑉 ∈ (𝑋𝐿𝑣))
6261ex 448 . . . . . . 7 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (¬ 𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6362orrd 391 . . . . . 6 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑋 = 𝑣𝑉 ∈ (𝑋𝐿𝑣)))
6463orcomd 401 . . . . 5 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → (𝑉 ∈ (𝑋𝐿𝑣) ∨ 𝑋 = 𝑣))
651, 2, 3, 4, 5, 7, 23, 18, 20, 11, 46, 48, 64ragcol 25308 . . . 4 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑣𝑋𝑢”⟩ ∈ (∟G‘𝐺))
661, 2, 3, 4, 5, 7, 11, 18, 20, 65ragcom 25307 . . 3 ((𝜑 ∧ (𝑢𝐴𝑣𝐵)) → ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
6766ralrimivva 2949 . 2 (𝜑 → ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺))
681, 2, 3, 4, 6, 12, 8, 15isperp2 25324 . 2 (𝜑 → (𝐴(⟂G‘𝐺)𝐵 ↔ ∀𝑢𝐴𝑣𝐵 ⟨“𝑢𝑋𝑣”⟩ ∈ (∟G‘𝐺)))
6967, 68mpbird 245 1 (𝜑𝐴(⟂G‘𝐺)𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382   = wceq 1474  wcel 1975  wne 2775  wral 2891  cin 3534   class class class wbr 4573  ran crn 5025  cfv 5786  (class class class)co 6523  ⟨“cs3 13380  Basecbs 15637  distcds 15719  TarskiGcstrkg 25042  Itvcitv 25048  LineGclng 25049  pInvGcmir 25261  ∟Gcrag 25302  ⟂Gcperpg 25304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-pm 7720  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-card 8621  df-cda 8846  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-fz 12149  df-fzo 12286  df-hash 12931  df-word 13096  df-concat 13098  df-s1 13099  df-s2 13386  df-s3 13387  df-trkgc 25060  df-trkgb 25061  df-trkgcb 25062  df-trkg 25065  df-cgrg 25120  df-mir 25262  df-rag 25303  df-perpg 25305
This theorem is referenced by:  footex  25327  colperpexlem3  25338  mideulem2  25340  lmimid  25400  hypcgrlem1  25405  hypcgrlem2  25406  trgcopyeulem  25411
  Copyright terms: Public domain W3C validator