Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralab2 Structured version   Visualization version   GIF version

Theorem ralab2 3353
 Description: Universal quantification over a class abstraction. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ralab2.1 (𝑥 = 𝑦 → (𝜓𝜒))
Assertion
Ref Expression
ralab2 (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑦(𝜑𝜒))
Distinct variable groups:   𝑥,𝑦   𝜒,𝑥   𝜑,𝑥   𝜓,𝑦
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem ralab2
StepHypRef Expression
1 df-ral 2912 . 2 (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜓))
2 nfsab1 2611 . . . 4 𝑦 𝑥 ∈ {𝑦𝜑}
3 nfv 1840 . . . 4 𝑦𝜓
42, 3nfim 1822 . . 3 𝑦(𝑥 ∈ {𝑦𝜑} → 𝜓)
5 nfv 1840 . . 3 𝑥(𝜑𝜒)
6 eleq1 2686 . . . . 5 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝑦 ∈ {𝑦𝜑}))
7 abid 2609 . . . . 5 (𝑦 ∈ {𝑦𝜑} ↔ 𝜑)
86, 7syl6bb 276 . . . 4 (𝑥 = 𝑦 → (𝑥 ∈ {𝑦𝜑} ↔ 𝜑))
9 ralab2.1 . . . 4 (𝑥 = 𝑦 → (𝜓𝜒))
108, 9imbi12d 334 . . 3 (𝑥 = 𝑦 → ((𝑥 ∈ {𝑦𝜑} → 𝜓) ↔ (𝜑𝜒)))
114, 5, 10cbval 2270 . 2 (∀𝑥(𝑥 ∈ {𝑦𝜑} → 𝜓) ↔ ∀𝑦(𝜑𝜒))
121, 11bitri 264 1 (∀𝑥 ∈ {𝑦𝜑}𝜓 ↔ ∀𝑦(𝜑𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196  ∀wal 1478   ∈ wcel 1987  {cab 2607  ∀wral 2907 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-ral 2912 This theorem is referenced by:  ralrab2  3354  ssintab  4459  efgval  18051  efger  18052  elintabg  37361  elintima  37426
 Copyright terms: Public domain W3C validator