MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbii2 Structured version   Visualization version   GIF version

Theorem ralbii2 2974
Description: Inference adding different restricted universal quantifiers to each side of an equivalence. (Contributed by NM, 15-Aug-2005.)
Hypothesis
Ref Expression
ralbii2.1 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
Assertion
Ref Expression
ralbii2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)

Proof of Theorem ralbii2
StepHypRef Expression
1 ralbii2.1 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
21albii 1744 . 2 (∀𝑥(𝑥𝐴𝜑) ↔ ∀𝑥(𝑥𝐵𝜓))
3 df-ral 2913 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 2913 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43bitr4i 292 1 (∀𝑥𝐴 𝜑 ↔ ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wal 1478  wcel 1987  wral 2908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-ral 2913
This theorem is referenced by:  ralbiia  2975  ralbii  2976  raleqbii  2986  ralrab  3355  raldifb  3734  raldifsni  4300  reusv2  4844  dfsup2  8310  iscard2  8762  acnnum  8835  dfac9  8918  dfacacn  8923  raluz2  11697  ralrp  11812  isprm4  15340  isdomn2  19239  isnrm2  21102  ismbl  23234  ellimc3  23583  dchrelbas2  24896  h1dei  28297  fnwe2lem2  37140  sdrgacs  37291
  Copyright terms: Public domain W3C validator