MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralbiim Structured version   Visualization version   GIF version

Theorem ralbiim 3065
Description: Split a biconditional and distribute quantifier. Restricted quantifier version of albiim 1814. (Contributed by NM, 3-Jun-2012.)
Assertion
Ref Expression
ralbiim (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))

Proof of Theorem ralbiim
StepHypRef Expression
1 dfbi2 659 . . 3 ((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))
21ralbii 2977 . 2 (∀𝑥𝐴 (𝜑𝜓) ↔ ∀𝑥𝐴 ((𝜑𝜓) ∧ (𝜓𝜑)))
3 r19.26 3060 . 2 (∀𝑥𝐴 ((𝜑𝜓) ∧ (𝜓𝜑)) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
42, 3bitri 264 1 (∀𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 (𝜑𝜓) ∧ ∀𝑥𝐴 (𝜓𝜑)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  wral 2909
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735
This theorem depends on definitions:  df-bi 197  df-an 386  df-ral 2914
This theorem is referenced by:  eqreu  3392  isclo2  20873  chrelat4i  29202  hlateq  34504  ntrneik13  38216  ntrneix13  38217  2ralbiim  40937
  Copyright terms: Public domain W3C validator