MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifb Structured version   Visualization version   GIF version

Theorem raldifb 3711
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 460 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
2 df-nel 2782 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥𝐵)
32anbi2i 725 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
4 eldif 3549 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
53, 4bitr4i 265 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
65imbi1i 337 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
71, 6bitr3i 264 . 2 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
87ralbii2 2960 1 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wa 382  wcel 1976  wnel 2780  wral 2895  cdif 3536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2032  ax-13 2232  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-nel 2782  df-ral 2900  df-v 3174  df-dif 3542
This theorem is referenced by:  raldifsnb  4265  coprmproddvdslem  15160  cusgrares  25767  2spotdisj  26354  poimirlem26  32408  2wspdisj  41167  aacllem  42319
  Copyright terms: Public domain W3C validator