MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifb Structured version   Visualization version   GIF version

Theorem raldifb 3893
Description: Restricted universal quantification on a class difference in terms of an implication. (Contributed by Alexander van der Vekens, 3-Jan-2018.)
Assertion
Ref Expression
raldifb (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)

Proof of Theorem raldifb
StepHypRef Expression
1 impexp 461 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥𝐴 → (𝑥𝐵𝜑)))
2 df-nel 3036 . . . . . 6 (𝑥𝐵 ↔ ¬ 𝑥𝐵)
32anbi2i 732 . . . . 5 ((𝑥𝐴𝑥𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
4 eldif 3725 . . . . 5 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴 ∧ ¬ 𝑥𝐵))
53, 4bitr4i 267 . . . 4 ((𝑥𝐴𝑥𝐵) ↔ 𝑥 ∈ (𝐴𝐵))
65imbi1i 338 . . 3 (((𝑥𝐴𝑥𝐵) → 𝜑) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
71, 6bitr3i 266 . 2 ((𝑥𝐴 → (𝑥𝐵𝜑)) ↔ (𝑥 ∈ (𝐴𝐵) → 𝜑))
87ralbii2 3116 1 (∀𝑥𝐴 (𝑥𝐵𝜑) ↔ ∀𝑥 ∈ (𝐴𝐵)𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  wcel 2139  wnel 3035  wral 3050  cdif 3712
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-nel 3036  df-ral 3055  df-v 3342  df-dif 3718
This theorem is referenced by:  raldifsnb  4471  coprmproddvdslem  15578  poimirlem26  33748  aacllem  43060
  Copyright terms: Public domain W3C validator