MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raldifeq Structured version   Visualization version   GIF version

Theorem raldifeq 4442
Description: Equality theorem for restricted universal quantifier. (Contributed by Thierry Arnoux, 6-Jul-2019.)
Hypotheses
Ref Expression
raldifeq.1 (𝜑𝐴𝐵)
raldifeq.2 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
Assertion
Ref Expression
raldifeq (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)

Proof of Theorem raldifeq
StepHypRef Expression
1 raldifeq.2 . . . 4 (𝜑 → ∀𝑥 ∈ (𝐵𝐴)𝜓)
21biantrud 534 . . 3 (𝜑 → (∀𝑥𝐴 𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓)))
3 ralunb 4170 . . 3 (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ (∀𝑥𝐴 𝜓 ∧ ∀𝑥 ∈ (𝐵𝐴)𝜓))
42, 3syl6bbr 291 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓))
5 raldifeq.1 . . . 4 (𝜑𝐴𝐵)
6 undif 4433 . . . 4 (𝐴𝐵 ↔ (𝐴 ∪ (𝐵𝐴)) = 𝐵)
75, 6sylib 220 . . 3 (𝜑 → (𝐴 ∪ (𝐵𝐴)) = 𝐵)
87raleqdv 3418 . 2 (𝜑 → (∀𝑥 ∈ (𝐴 ∪ (𝐵𝐴))𝜓 ↔ ∀𝑥𝐵 𝜓))
94, 8bitrd 281 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wral 3141  cdif 3936  cun 3937  wss 3939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ral 3146  df-rab 3150  df-v 3499  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295
This theorem is referenced by:  cantnfrescl  9142  rrxmet  24014  ntrneiel2  40442  ntrneik4w  40456
  Copyright terms: Public domain W3C validator