MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralima Structured version   Visualization version   GIF version

Theorem ralima 6538
Description: Universal quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
ralima ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem ralima
StepHypRef Expression
1 fvexd 6241 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
2 fvelimab 6292 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
3 eqcom 2658 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
43rexbii 3070 . . 3 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
52, 4syl6bb 276 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
6 rexima.x . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
76adantl 481 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
81, 5, 7ralxfr2d 4912 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∀𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∀𝑦𝐵 𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  Vcvv 3231  wss 3607  cima 5146   Fn wfn 5921  cfv 5926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-br 4686  df-opab 4746  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-fv 5934
This theorem is referenced by:  supisolem  8420  ordtypelem6  8469  ordtypelem7  8470  limsupgle  14252  mrcuni  16328  ipodrsima  17212  mhmima  17410  ghmnsgima  17731  cntzmhm  17817  qtopeu  21567  kqdisj  21583  ghmcnp  21965  qustgplem  21971  qtopbaslem  22609  bndth  22804  fmcfil  23116  ovoliunlem1  23316  volsup2  23419  mbflimsup  23478  itg2gt0  23572  mdegleb  23869  efopn  24449  fsumdvdsmul  24966  imaelshi  29045  cvmopnlem  31386  ovoliunnfl  33581  voliunnfl  33583  volsupnfl  33584  gicabl  37986  mgmhmima  42127
  Copyright terms: Public domain W3C validator