MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralimi2 Structured version   Visualization version   GIF version

Theorem ralimi2 2944
Description: Inference quantifying both antecedent and consequent. (Contributed by NM, 22-Feb-2004.)
Hypothesis
Ref Expression
ralimi2.1 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
Assertion
Ref Expression
ralimi2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)

Proof of Theorem ralimi2
StepHypRef Expression
1 ralimi2.1 . . 3 ((𝑥𝐴𝜑) → (𝑥𝐵𝜓))
21alimi 1736 . 2 (∀𝑥(𝑥𝐴𝜑) → ∀𝑥(𝑥𝐵𝜓))
3 df-ral 2912 . 2 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
4 df-ral 2912 . 2 (∀𝑥𝐵 𝜓 ↔ ∀𝑥(𝑥𝐵𝜓))
52, 3, 43imtr4i 281 1 (∀𝑥𝐴 𝜑 → ∀𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1478  wcel 1987  wral 2907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734
This theorem depends on definitions:  df-bi 197  df-ral 2912
This theorem is referenced by:  ralimia  2945  ralcom3  3095  tfi  7000  resixpfo  7890  omex  8484  kmlem1  8916  brdom5  9295  brdom4  9296  xrub  12085  pcmptcl  15519  itgeq2  23450  iblcnlem  23461  pntrsumbnd  25155  nmounbseqi  27478  nmounbseqiALT  27479  sumdmdi  29125  dmdbr4ati  29126  dmdbr6ati  29128  bnj110  30633  fiinfi  37356
  Copyright terms: Public domain W3C validator